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Forget Fluid Dynamics 

Strictly speaking, fluid (hydro, MHD, two-fluid/Braginskii…) equations 
are only valid in the collisional limit: 
 
 
because they rely on particles being in local Maxwellian equilibrium,  
so they can be described by a few fluid moments: density, flow velocity, 
temperature (++perhaps fields: magnetic, electric) 
 
This means they are OK in dense, cold environments: 
wind in Chamonix valley, sodium dynamo, Earth mantle, solar convective 
zone, molecular clouds, some accretion discs…  
 
They are NOT OK in hot, dilute astro and laboratory plasmas: 
solar wind, warm/hot ISM, intergalactic, tokamaks, LAPD, MPDX… 



Large Scales and Small Scales 
In fact, fluid description is perhaps OK at large scales, but virtually 
never on small (turbulence scales): 

Slow, collisionally enforced 
large-scale local equilibrium 

(Maxwellian) 
 

NB: even that is often not quite so, 
but I will not deal with non-Maxwellian 

equilibria in this lecture 
(see lectures by Kunz, Sulem, Passot 
on effects of  pressure anisotropies: 
a difficult poorly chartered terrain, 
exciting area of  current research) 

Fast collisionless fluctuations 
(turbulence), 

often driven by gradients 
in the equilibrium profiles 
(        , flow shear, etc… )  



Plasma Turbulence Extends to Collisionless Scales	


Turbulence in the solar wind 
[Sahraoui et al. 2009, PRL 102, 231102]  

λmfp ~ 108 km (~1 AU) 
L ~ 105 km 
ρi  ~ 102 km 



Plasma Turbulence Extends to Collisionless Scales	


Turbulence in the solar wind 
[Alexandrova et al. 2009, PRL 103, 165003]  

λmfp ~ 108 km (~1 AU) 
L ~ 105 km 
ρi  ~ 102 km 



Plasma Turbulence Extends to Collisionless Scales	


Interstellar medium: “Great Power Law in the Sky” 

L ~ 1013 km (~100 pc) 
λmfp ~ 107 km 
ρi  ~ 104 km k–5/3 

[Armstrong et al. 1995, ApJ 443, 209] 



Plasma Turbulence Extends to Collisionless Scales	


Intracluster (intergalactic) medium 

L ~ 1019 km (~1 Mpc) 
λmfp ~ 1016 km (~1 kpc) 
ρi  ~ 104 km 

Hydra A cluster [Vogt & Enßlin 2005, A&A 434, 67]  



What Is Turbulence in Such Systems? 

Scale 

MICRO 

MACRO 

MESO 

ENERGY 
INJECTED 

ENERGY 
DISSIPATED 

ENERGY 
TRANSPORTED 

λmfp  

Turbulence is always energy conversion 
from mean motions and fields into  
heat (internal energy)  

In a weakly collisional plasma, it is 
a nontrivial question how this energy 
is partitioned between electrons,  
ions, minority admixtures, fast particles etc…  



The Ti/Te Problem  
 We know that Ti ≠ Te is a non-equilibrium situation (entropy will 
     increase if  temperatures equalise) 
 We know of  no mechanism other than i-e Coulomb collisions 
     that would equalise temperatures (e.g., no instabilities or fluxes, like 
     with gradients). But       is very small in weakly collisional plasmas 
 Where we can measure both temperatures (lab, space), they tend to 
     be within a factor of  order unity of  each other 
  In extrasolar or extragalactic plasmas, we normally assume Ti = Te   
     unless it is opportune to assume otherwise (Ti >> Te  in some models 
     of  some accretion discs), but actually we have no idea what they are 
  Fundamental question: 
    Will turbulence equalise (or drive apart) Ti and Te ? I.e., 
•  If  Ti > Te then ion heating < electron heating 
•  If  Ti < Te then ion heating > electron heating   

    If  not, can we predict Ti/Te as a function of  β ?   



Turbulence Is a Nonlinear Route to Dissipation 

energy 
injected 

E(k) 

k	

inertial range 

energy 
dissipated 

energy transported 

ε	


If  cascade is local, 
intermediate scales fill up 

⇒ K41, spectra,  
and all that 

(see Boldyrev’s lecture) 

k–5/3	


NB: viscosity can be arbitrarily 
small, but not zero, 

scales will adjust 



Plasma Turbulence Ab Initio 

energy injection (model) 

PPCF 50, 124024 (2008)



Plasma Turbulence Ab Initio 

Work done energy injection (model) 

PPCF 50, 124024 (2008)



Plasma Turbulence Ab Initio 

Work done 

Entropy produced: 

Boltzmann 1872 

energy injection (model) 

PPCF 50, 124024 (2008)

Then 

(to second order) 



Plasma Turbulence Ab Initio 

Work done 

Entropy produced: 
energy injection (model) 

PPCF 50, 124024 (2008)

(to second order) 



Plasma Turbulence Ab Initio 

Work done 

Entropy produced: 
energy injection (model) 

PPCF 50, 124024 (2008)



Plasma Turbulence Ab Initio 

Work done 

Heating: 

Fluctuation energy budget: 

–TδS energy heating 

energy injection (model) 

PPCF 50, 124024 (2008)

injection 



“Energy” in Plasma Turbulence 

–TδS	
 energy 

heating 

Generalised energy = free energy of  the particles + fields 

Kruskal & Oberman 1958 
Fowler 1968 
Krommes & Hu 1994 
Krommes 1999 
Sugama et al. 1996 
Hallatschek 2004 
Howes et al. 2006 
Schekochihin et al. 2007 
Scott 2007 
Abel et al. 2013 PPCF 50, 124024 (2008)

injection 



“Energy” in Plasma Turbulence 

–TδS	
 energy 

heating 

Generalised energy = free energy of  the particles + fields 

Kruskal & Oberman 1958 
Fowler 1968 
Krommes & Hu 1994 
Krommes 1999 
Sugama et al. 1996 
Hallatschek 2004 
Howes et al. 2006 
Schekochihin et al. 2007 
Scott 2007 
Abel et al. 2013 PPCF 50, 124024 (2008)

injection 

NB: Landau damping is a redistribution 
between the e-m fluctuation energy and 
(negative) perturbed entropy (free 
energy). It was pointed out already 
by Landau 1946 that δfs does not decay: 
“ballistic response” 



Analogous to Fluid, But… 

small scales in 3D 
physical space 

small scales in 6D 
phase space 

–TδS	
 energy 

heating injection 

PPCF 50, 124024 (2008)



Analogous to Fluid, But… 

small scales in 6D 
phase space 

–TδS	
 energy 

heating injection 

PPCF 50, 124024 (2008)

Small scales in velocity space (phase mixing) 



Linear Phase Mixing 

particle streaming 
along magnetic 

field 

perpendicular nonlinearity, 
interaction with fields, etc. 

(to be dealt with later) 

Can think of  this 
as shear 

in phase space 



Linear Phase Mixing 

particle streaming 
along magnetic 

field 

perpendicular nonlinearity, 
interaction with fields, etc. 

(to be dealt with later) 

“Ballistic response”: 
                        (always part of  the Landau damping solution) 

 

So small-scale structure forms and is eventually 
wiped out by collisions (but we will see that there is a much 
faster nonlinear mechanism for that: turbulence) 

Can think of  this 
as shear 

in phase space 



From MHD to Kinetic Scales 
Let us now see what happens nonlinearly: the turbulent cascade 
starts as MHD turbulence and gets to collisionless scales, then what? 

k–5/3	


energy 
injected 

k–1/3	

KAW 

δu	


δB	


??? 



MHD Cascade Is Anisotropic 

•  (2+1)D route through 
                         phase space: 

[Wicks et al. 2010, 
MNRAS 407, L31 ] 

SOLAR WIND 

•  Strong anisotropy:                          
In magnetised plasma, 
confirmed by numerics (MHD) 
and observations (solar wind, ISM) 

•  Strong nonlinearity: 
ωlinear ~ ωnonlinear	

Critical balance as a physical principle 
(see Boldyrev’s lectures)  



Turbulence Reaches Larmor Scales and Beyond 
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Turbulence Reaches Larmor Scales and Beyond 

•  (2+1)D route through 
                         phase space 
•  Stuff  happens at 
                           
 

•  Strong anisotropy:                          
In magnetised plasma, 
confirmed by numerics (MHD) 
and observations (solar wind, ISM) 

•  Strong nonlinearity: 
ωlinear ~ ωnonlinear	

Critical balance as a physical principle 
(see Boldyrev’s lectures)  

[Sahraoui et al. 2009, 
 PRL 102, 231102] 

SOLAR WIND 



Turbulence Reaches Larmor Scales and Beyond 

•  (2+1)D route through 
                         phase space 
•  Stuff  happens at 
                           
NB: This transition is also key in 
fusion plasmas, whence comes 
much of  the appropriate 
theoretical machinery 
(see Jenko’s lecture) 

•  Strong anisotropy:                          
In magnetised plasma, 
confirmed by numerics (MHD) 
and observations (solar wind, ISM) 

•  Strong nonlinearity: 
ωlinear ~ ωnonlinear	

Critical balance as a physical principle 
(see Boldyrev’s lectures)  

[Roach et al. 2009, PPCF 51, 124020] 

ITG 

ETG 

TOKAMAK DNS 



Turbulence Reaches Larmor Scales and Beyond 

•  (2+1)D route through 
                         phase space 
•  Stuff  happens at 
                           
NB: This transition is also key in 
fusion plasmas, whence comes 
much of  the appropriate 
theoretical machinery 
(see Jenko’s lecture) 

•  Strong anisotropy:                          

•  Strong nonlinearity: 
ωlinear ~ ωnonlinear	

Critical balance as a physical principle 
(see Boldyrev’s lectures)  

[Hennequin et al. 2004, 
 PPCF 46, B121] 

TORE SUPRA 

In magnetised plasma, 
confirmed by numerics (MHD) 
and observations (solar wind, ISM) 



Turbulence Reaches Larmor Scales and Beyond 

•  (2+1)D route through 
                         phase space 
•  Stuff  happens at 
                           
NB: This transition is also key in 
fusion plasmas, whence comes 
much of  the appropriate 
theoretical machinery 
(see Jenko’s lecture) 

•  Strong anisotropy:                          

•  Strong nonlinearity: 
ωlinear ~ ωnonlinear	

Critical balance as a physical principle 
(see Boldyrev’s lectures)  

In magnetised plasma, 
confirmed by numerics (MHD) 
and observations (solar wind, ISM) 

TOKAMAK DNS 

[Görler & Jenko (2008), 
PoP 15, 102508] 



Critical Balance as an Ordering Assumption 

•  Strong anisotropy:                          (this is the small parameter!) 

•  Strong nonlinearity: 
  (critical balance as an ordering assumption) 



Gyrokinetics 

(this is the small parameter!) 

•  Strong nonlinearity: 
  (critical balance as an ordering assumption) 

•  Strong anisotropy:   

•  Finite Larmor radius: 

Low frequency 

GK ORDERING: 

•  Weak collisions: 

[Howes et al. 2006, ApJ 651, 590 
& refs. therein] 



Gyrokinetics: Kinetics of Larmor Rings 

[Howes et al. 2006, ApJ 651, 590 
& refs. therein] 

Particle dynamics can be averaged over 
the Larmor orbits and everything reduces  
to kinetics of  Larmor rings centered at 
 
 
 
and interacting with the electromagnetic 
fluctuations.  

Catto 
transformation 

distribution of  rings 
only two velocity variables, 

i.e., 6D → 5D 

Boltzmann bit 



Gyrokinetics: Kinetics of Larmor Rings 

[Howes et al. 2006, ApJ 651, 590 
& refs. therein] 

Particle dynamics can be averaged over 
the Larmor orbits and everything reduces  
to kinetics of  Larmor rings centered at 
 
 
 
and interacting with the electromagnetic 
fluctuations.  

Catto 
transformation 

+ Maxwell’s equations 
(quasineutrality and 
 Ampère’s law)  



Gyrokinetics: Kinetics of Larmor Rings 

[Howes et al. 2006, ApJ 651, 590 
& refs. therein] 

+ Maxwell’s equations 
(quasineutrality and 
 Ampère’s law)  

Averaged gyrocentre drifts: 
•  E×B0 drift 
•  ∇B drift 
•  motion along 
  perturbed fieldline 

Averaged 
wave-ring 
interaction 



GK Phase Mixing (Entropy Cascade) 

collisions 

•  Gyroveraged fluctuations mix hi via this term,  
  so hi developes small (perpendicular)  
  scales in the gyrocenter space: 

•	


PPCF 50, 124024 (2008)

electrostatic for 
simplicity:         

linear phase mixing 
(slow; ask 
me later!) 

nonlinearity 



GK Phase Mixing (Entropy Cascade) 

collisions 

•  Gyroveraged fluctuations mix hi via this term,  
  so hi developes small (perpendicular)  
  scales in the gyrocenter space: 
•  In this limit, free energy conservation is •	


PPCF 50, 124024 (2008)

This is (minus) the entropy of  the perturbed  
distribution; it is damped only by collisions 
(Boltzmann!), so hi must be phase mixed 
to small scales in velocity space. HOW? 

linear phase mixing 
(slow; ask 
me later!) 

nonlinearity 



GK Phase Mixing (Entropy Cascade) 

collisions 

•  Gyroveraged fluctuations mix hi via this term,  
  so hi developes small (perpendicular)  
  scales in the gyrocenter space: 

PPCF 50, 124024 (2008)

•  Two values of  the gyroaveraged potential 
                                             come from 
  spatially decorrelated fluctuations if  

[This perpendicular nonlinear phase-mixing mechanism 
was anticipated by Dorland & Hammett 1993] 

•	

•	


linear phase mixing 
(slow; ask 
me later!) 

nonlinearity 



GK Phase Mixing (Entropy Cascade) 

collisions 

•  Gyroveraged fluctuations mix hi via this term,  
  so hi developes small (perpendicular)  
  scales in the gyrocenter space: 

PPCF 50, 124024 (2008)

•  Two values of  the gyroaveraged potential 
                                             come from 
  spatially decorrelated fluctuations if  

[This perpendicular nonlinear phase-mixing mechanism 
was anticipated by Dorland & Hammett 1993] 

•	

•	


[Tatsuno et al. 2009, 
PRL 103, 015003] 

linear phase mixing 
(slow; ask 
me later!) 

nonlinearity 



Entropy Cascade 
•  The cascade is now in phase space, involving both position and 
   velocity, because entropy must get to small scales in velocity 
•  G. Plunk has developed a spectral formalism to quantify perpendicular 
   velocity-space structure via Hankel transforms: 

•  T. Tatsuno found the cascade 
  along the (k, p) diagonal in his 
  2D GK DNS 

[Plunk et al. 2009, arXiv:0904.0243] 

[Tatsuno et al. 2009, PRL 103, 015003; 
more detail in arXiv:1003.3933] 
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•  G. Plunk has developed a spectral formalism to quantify perpendicular 
   velocity-space structure via Hankel transforms: 

•  T. Tatsuno found the cascade 
  along the (k, p) diagonal in his 
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Entropy Cascade 
•  The cascade is now in phase space, involving both position and 
   velocity, because entropy must get to small scales in velocity 
•  Kolmogorov-style constant-flux argument gives  
                                    spectrum of  hi ~	
	

                                    spectrum of ϕ ~  

PPCF 50, 124024 (2008)

•  2D GK DNS by T. Tatsuno confirm these scalings 
[Tatsuno et al. 2009, PRL 103, 015003; more detail in arXiv:1003.3933] 



Entropy Cascade 
•  The cascade is now in phase space, involving both position and 
   velocity, because entropy must get to small scales in velocity 
•  Kolmogorov-style constant-flux argument gives  
                                    spectrum of  hi ~	
	

                                    spectrum of ϕ ~  

PPCF 50, 124024 (2008)

•  2D GK DNS by T. Tatsuno confirm these scalings 
[Tatsuno et al. 2009, PRL 103, 015003; more detail in arXiv:1003.3933] 

•  It is attractive to think of  this as 
  a universal theory of  sub-Larmor 
  turbulence and, for example, 
  attribute to it the sub-Larmor 
  scalings seen in 3D GK DNS 
  of  tokamak turbulence by 
  by Görler & Jenko (2008)  

[Görler & Jenko (2008), 
PoP 15, 102508] 



Entropy Cascade 
•  The cascade is now in phase space, involving both position and 
   velocity, because entropy must get to small scales in velocity 
•  Kolmogorov-style constant-flux argument gives  
                                    spectrum of  hi ~	
	

                                    spectrum of ϕ ~  

PPCF 50, 124024 (2008)

•  2D GK DNS by T. Tatsuno confirm these scalings 
[Tatsuno et al. 2009, PRL 103, 015003; more detail in arXiv:1003.3933] 

•  G. Plunk has developed a ful Kolmogorov-style theory for the 2D 
  version of  this turbulence, complete with third-order exact laws, 
  direct and inverse cascades, scalings in phase space etc. 

[Plunk et al. 2010, JFM 664, 407] 



Entropy Cascade 
•  The cascade is now in phase space, involving both position and 
   velocity, because entropy must get to small scales in velocity 
•  Kolmogorov-style constant-flux argument gives  
                                    spectrum of  hi ~	
	

                                    spectrum of ϕ ~  

PPCF 50, 124024 (2008)

•  2D GK DNS by T. Tatsuno confirm these scalings 
[Tatsuno et al. 2009, PRL 103, 015003; more detail in arXiv:1003.3933] 

•  G. Plunk has developed a ful Kolmogorov-style theory for the 2D 
  version of  this turbulence, complete with third-order exact laws, 
  direct and inverse cascades, scalings in phase space etc. 

•  Dissipation scale 
   in phase space 
   (cf. Kolmogorov 
    scale vs. Re) 

Do–3/5 

Dorland Number 

characteristic 
time at the ion 
gyroscale 

[Plunk et al. 2010, JFM 664, 407] 



Entropy Cascade 
•  The cascade is now in phase space, involving both position and 
   velocity, because entropy must get to small scales in velocity 
•  Kolmogorov-style constant-flux argument gives  
                                    spectrum of  hi ~	
	

                                    spectrum of ϕ ~  

PPCF 50, 124024 (2008)

•  Just last week a PRL by E. Kawamori came out claiming a laboratory 
  measurement that confirms the entropy cascade:  

by the two-point technique with the FSLP. j!kyj2 ¼
R1
"1 j!kx;ky j2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
Þdkx is equivalent to the one-

dimensional spectrum FðkyÞ, which follows k""
y scaling

if the energy spectrum density j!kx;kyj2ðkx;kyÞ is isotropic
in the k?-space and E!ðk?Þ / k?j!k?j2ðk?Þ follows k""

?
scaling. In Fig. 3, each spectrum is appropriately shifted
vertically to prevent overlapping and provide better visi-
bility. At higher wave numbers ky#i > 1, FðkyÞ for state
(iii) decays more sharply than that for the other states.
The high-ky power spectrum for state (iii) clearly follows

k"10=3
y , as predicted by Schekochihin et al. [8]. Also a line
proportional to k"6

y is shown together for comparison.
The fact that the spectrum in state (iii) followed the

k"10=3
? power law indicates that local interaction dominated
the entropy cascade in the k? range. On the other hand,
state (ii) was considered to be affected by disparate scale
interactions because a zonal-flow-like structure (m ¼ 0,
kk ¼ 0) was formed.

Here we examine the influence of linear phase mixing
based on typical measured plasma parameters: Ti ¼
0:1 eV; ! & 3' 103 ' 2$ & 18 krad s"1 ( kkvthi ¼
0:4' 490 m s"1 ¼ 196 rad s"1. Therefore, we conclude
that linear phase mixing is negligible in these plasma states.
In addition, as shown in Ref. [8], for ions, the linear phase

mixing whose time scale t & ðkkvthiÞ"1ð!=%iiÞ1=2 can be
superseded by a faster nonlinear phase mixing that cas-
cades the turbulent electric field energy to collisional
velocity scales over times t & !"1. In our case, because
the nonlinear decorrelation time &l dominated, t & &l.

The exponent of the power spectrum should be indepen-
dent of the plasma production method as long as turbulent
plasmas maintain the 2D electrostatic gyrokinetic condition,
according to the theory. Figure 4 shows one-dimensional
spectra FðkyÞ of electron cyclotron resonance discharge
plasmas in the turbulent state associated dominantly with

drift waves. Two plasma shots having different dimension-
less parameters D are shown (gray: D ¼ 28, blue: D ¼ 8),
where the dimensionless parameter D ¼ ðk?c#iÞ5=3 ¼
1=ð%ii&pÞ represents the ratio between the nonlinear term
and the dissipation term in the gyrokinetic turbulence
[10,18]. The quantities %ii and &p are the ion-ion collision
frequency and the turnover time of the turbulent eddy at the
scale #i, respectively. Both spectra FðkyÞ had a range

following the k"10=3
y law for ky#i > 1 within 10%–15%

discrepancy in the exponent, in the same manner as the
turbulent hot-cathode plasma did [state (iii) in Fig. 3].
The cutoff of the entropy cascade spectrum k?c, above

which the entropy cascade is smeared by collisions, is
given as k?c#i ¼ D3=5 [10,18]. In the turbulent state D ¼
28 in Fig. 4 (whose plasma parameters were &p ) B0 '
2$=kx=ðky’Þ & 0:045' 2$=ð3142 * 0:56Þ & 5:1' 10"6 s,
fci¼17:2 kHz, Ti0 ¼ 0:4 eV, and ne0 ¼ 5:8' 1015 m"3),
k?c#ijtheory estimated from the formula is 7.4, whereas
k?c#ijmeas evaluated from the inflection point of the spec-
trum is 15 & 2:0' k?c#ijtheory. Similarly, the calculated
k?c#ijtheory for the D ¼ 8 plasma, whose plasma parame-
ters were Ti0 ¼ 0:4 eV, ne0 ¼ 1:6' 1016 m"3 and fci ¼
32:8 kHz, is 3.5. The measurement indicated that
k?c#ijmeas ¼ 8 & 2:3' k?c#ijtheory. Therefore, the ex-
perimentally obtained k?c#i agreed with the theoretical
evaluation.
In summary, we have shown experimentally observed

electrostatic potential fluctuations that support the existence

of the k"10=3
? inertial range of an entropy cascade in 2D

electrostatic turbulence in a laboratory magnetized plasma.
The one-dimensional spectra of the electrostatic potential
on the sub-Larmor scale was measured, and the exponent
of the electrostatic potential fluctuation spectrum agreed
with the theoretical results of Schekochihin et al. [8] and
the result of a numerical simulation by Tatsuno et al. [18].
The cutoff wave numbers of the spectrum, above which

FIG. 4 (color online). One-dimensional spectra FðkyÞ as a
function of wave number ky for two cases of different dimen-
sionless parameters D.

FIG. 3 (color online). One-dimensional spectra FðkyÞ as a
function of wave number ky for the three cases corresponding
to those of Fig. 2.
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by the two-point technique with the FSLP. j!kyj2 ¼
R1
"1 j!kx;ky j2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
Þdkx is equivalent to the one-
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if the energy spectrum density j!kx;kyj2ðkx;kyÞ is isotropic
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?
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(iii) decays more sharply than that for the other states.
The high-ky power spectrum for state (iii) clearly follows
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y , as predicted by Schekochihin et al. [8]. Also a line
proportional to k"6

y is shown together for comparison.
The fact that the spectrum in state (iii) followed the

k"10=3
? power law indicates that local interaction dominated
the entropy cascade in the k? range. On the other hand,
state (ii) was considered to be affected by disparate scale
interactions because a zonal-flow-like structure (m ¼ 0,
kk ¼ 0) was formed.

Here we examine the influence of linear phase mixing
based on typical measured plasma parameters: Ti ¼
0:1 eV; ! & 3' 103 ' 2$ & 18 krad s"1 ( kkvthi ¼
0:4' 490 m s"1 ¼ 196 rad s"1. Therefore, we conclude
that linear phase mixing is negligible in these plasma states.
In addition, as shown in Ref. [8], for ions, the linear phase

mixing whose time scale t & ðkkvthiÞ"1ð!=%iiÞ1=2 can be
superseded by a faster nonlinear phase mixing that cas-
cades the turbulent electric field energy to collisional
velocity scales over times t & !"1. In our case, because
the nonlinear decorrelation time &l dominated, t & &l.

The exponent of the power spectrum should be indepen-
dent of the plasma production method as long as turbulent
plasmas maintain the 2D electrostatic gyrokinetic condition,
according to the theory. Figure 4 shows one-dimensional
spectra FðkyÞ of electron cyclotron resonance discharge
plasmas in the turbulent state associated dominantly with

drift waves. Two plasma shots having different dimension-
less parameters D are shown (gray: D ¼ 28, blue: D ¼ 8),
where the dimensionless parameter D ¼ ðk?c#iÞ5=3 ¼
1=ð%ii&pÞ represents the ratio between the nonlinear term
and the dissipation term in the gyrokinetic turbulence
[10,18]. The quantities %ii and &p are the ion-ion collision
frequency and the turnover time of the turbulent eddy at the
scale #i, respectively. Both spectra FðkyÞ had a range

following the k"10=3
y law for ky#i > 1 within 10%–15%

discrepancy in the exponent, in the same manner as the
turbulent hot-cathode plasma did [state (iii) in Fig. 3].
The cutoff of the entropy cascade spectrum k?c, above

which the entropy cascade is smeared by collisions, is
given as k?c#i ¼ D3=5 [10,18]. In the turbulent state D ¼
28 in Fig. 4 (whose plasma parameters were &p ) B0 '
2$=kx=ðky’Þ & 0:045' 2$=ð3142 * 0:56Þ & 5:1' 10"6 s,
fci¼17:2 kHz, Ti0 ¼ 0:4 eV, and ne0 ¼ 5:8' 1015 m"3),
k?c#ijtheory estimated from the formula is 7.4, whereas
k?c#ijmeas evaluated from the inflection point of the spec-
trum is 15 & 2:0' k?c#ijtheory. Similarly, the calculated
k?c#ijtheory for the D ¼ 8 plasma, whose plasma parame-
ters were Ti0 ¼ 0:4 eV, ne0 ¼ 1:6' 1016 m"3 and fci ¼
32:8 kHz, is 3.5. The measurement indicated that
k?c#ijmeas ¼ 8 & 2:3' k?c#ijtheory. Therefore, the ex-
perimentally obtained k?c#i agreed with the theoretical
evaluation.
In summary, we have shown experimentally observed

electrostatic potential fluctuations that support the existence

of the k"10=3
? inertial range of an entropy cascade in 2D

electrostatic turbulence in a laboratory magnetized plasma.
The one-dimensional spectra of the electrostatic potential
on the sub-Larmor scale was measured, and the exponent
of the electrostatic potential fluctuation spectrum agreed
with the theoretical results of Schekochihin et al. [8] and
the result of a numerical simulation by Tatsuno et al. [18].
The cutoff wave numbers of the spectrum, above which

FIG. 4 (color online). One-dimensional spectra FðkyÞ as a
function of wave number ky for two cases of different dimen-
sionless parameters D.

FIG. 3 (color online). One-dimensional spectra FðkyÞ as a
function of wave number ky for the three cases corresponding
to those of Fig. 2.
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if  “critical balance” holds, 

so linear phase mixing is slow  

“ballistic response”:  



So How Do MHD and GK Tie Together? 
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Larmor Transition: 3D GK DNS (by G. Howes)  
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Sub-Larmor Cascade: 3D GK DNS (by G. Howes) 
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KAW Fluctuations 

Start with GK, consider the scales such that 
This is not a very wide interval, but an important one: 
 
 
 
 
(answer to the general question of  life, Universe and everything)  
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KAW Fluctuations 

This is the anisotropic version of  EMHD 
[Kingsep et al. 1990, Rev. Plasma Phys. 16, 243], 
which is derived (for βi >>1) by assuming 
magnetic field frozen into electron fluid and 
doing a RMHD-style anisotropic expansion: 

Start with GK, consider the scales such that  

ApJS 182, 310 (2009)
[Ions more or less an immobile 

neutralising background] 

Boltzmann ions 

pressure balance 
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states that the parallel ion flow velocity can be neglected. Finally,
Equation (223) expresses the pressure balance for Boltzmann
(and, therefore, isothermal) electrons (Equation (103)) and ions:
if we write

B0δB‖

4π
= −δpi − δpe = −T0iδni − T0eδne, (224)

it follows that

δB‖

B0
= −βi

2

(
1 +

Z

τ

)
δne

n0e

, (225)

which, combined with Equation (221), gives Equation (223).
We remind the reader that the perpendicular Ampère’s law,
from which Equation (223) was derived (Equation (66) via
Equation (120)) is, in gyrokinetics, indeed equivalent to the
statement of perpendicular pressure balance (see Section 3.3).

Substituting Equations (221)–(223) into Equations (116)–
(117), we obtain the following closed system of equations

∂Ψ
∂t

= vA

(
1 +

Z

τ

)
b̂ · ∇Φ, (226)

∂Φ
∂t

= − vA

2 + βi (1 + Z/τ )
b̂ · ∇

(
ρ2

i ∇2
⊥Ψ

)
. (227)

Note that, using Equation (223), Equations (226) and (227) can
be recast as two coupled evolution equations for the perpendic-
ular and parallel components of the perturbed magnetic field,
respectively (Equations (C10) in Appendix C.2).

We shall refer to Equations (226)–(227) as electron reduced
MHD (ERMHD). They are related to the electron magnetohy-
drodynamics (EMHD)—a fluid-like approximation that evolves
the magnetic field only and arises if one assumes that the mag-
netic field is frozen into the electron flow velocity ue, while the
ions are immobile, ui = 0 (Kingsep et al. 1990):

∂B
∂t

= − c

4πen0e

∇ × [(∇ × B) × B] . (228)

As explained in Appendix C.2, the result of applying the
RMHD/gyrokinetic ordering (Sections 2.1 and 3.1) to Equa-
tion (228), where B = B0ẑ + δB and

δB
B0

= 1
vA

ẑ × ∇⊥Ψ + ẑ
δB‖

B0
, (229)

coincides with our Equations (226)–(227) in the effectively in-
compressible limits of βi & 1 or βe = βiZ/τ & 1. When betas
are arbitrary, density fluctuations cannot be neglected compared
to the magnetic-field-strength fluctuations (Equation (225)) and
give rise to perpendicular ion flows with ∇ · ui '= 0. Thus, our
ERMHD system constitutes the appropriate generalization of
EMHD for low-frequency anisotropic fluctuations without the
assumption of incompressibility.

A (more tenuous) relationship also exists between our ER-
MHD system and the so-called Hall MHD, which, like EMHD,
is based on the magnetic field being frozen into the electron flow,
but includes the ion motion via the standard MHD momentum
equation (Equation (8)). Strictly speaking, Hall MHD can only
be used in the limit of cold ions, τ = T0i/T0e ( 1 (see, e.g.,
Ito et al. 2004; Hirose et al. 2004, and Appendix E), in which
case it can be shown to reduce to Equations (226)–(227) in the
appropriate small-scale limit (Appendix E). Although τ ( 1

Figure 9. Polarization of the kinetic Alfvén wave, see Equations (232) and
(233).

is not a natural assumption for most space and astrophysical
plasmas, Hall MHD has, due to its simplicity, been a popular
theoretical paradigm in the studies of space and astrophysical
plasma turbulence (see Section 8.2.6). We have therefore de-
voted Appendix E to showing how this approximation fits into
the theoretical framework proposed here: namely, we derive the
anisotropic low-frequency version of the Hall MHD approx-
imation from gyrokinetics under the assumption τ ( 1 and
discuss the role of the ion inertial and ion sound scales, which
acquire physical significance in this limit. However, outside this
Appendix, we assume τ ∼ 1 everywhere and shall not use Hall
MHD.

The validity of the ERMHD equations as a model for
plasma dynamics in the dissipation range is further discussed in
Section 7.6.

7.3. Kinetic Alfvén Waves

The linear modes supported by ERMHD are kinetic Alfvén
waves (KAW) with frequencies

ωk = ±

√
1 + Z/τ

2 + βi (1 + Z/τ )
k⊥ρik‖vA. (230)

This dispersion relation is illustrated in Figure 8: note that the
transition from Alfvén waves to dispersive KAW always occurs
at k⊥ρi ∼ 1, even when βi ( 1 or βi & 1. In the latter case,
there is a sharp frequency jump at the transition (accompanied
by very strong ion Landau damping).

The eigenfunctions corresponding to the two waves with
frequencies (230) are

Θ±
k =

√(
1 +

Z

τ

) [
2 + βi

(
1 +

Z

τ

)]
Φk

ρi

∓ k⊥Ψk. (231)

Using Equations (229) and (223), the perturbed magnetic-field
vector can be expressed as follows

δBk

B0
= −iẑ × k⊥

k⊥

Θ+
k − Θ−

k

2vA

+ ẑ

√
1 + Z/τ

2 + βi (1 + Z/τ )
Θ+

k + Θ−
k

2vA

,

(232)
so, for a single “+” or “−” wave (corresponding to Θ−

k = 0 or
Θ+

k = 0, respectively), δBk rotates in the plane perpendicular to
the wave vector k⊥ clockwise with respect to the latter, while
the wave propagates parallel or antiparallel to the guide field
(Figure 9).

no parallel ion current 
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states that the parallel ion flow velocity can be neglected. Finally,
Equation (223) expresses the pressure balance for Boltzmann
(and, therefore, isothermal) electrons (Equation (103)) and ions:
if we write

B0δB‖
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= −δpi − δpe = −T0iδni − T0eδne, (224)

it follows that
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which, combined with Equation (221), gives Equation (223).
We remind the reader that the perpendicular Ampère’s law,
from which Equation (223) was derived (Equation (66) via
Equation (120)) is, in gyrokinetics, indeed equivalent to the
statement of perpendicular pressure balance (see Section 3.3).

Substituting Equations (221)–(223) into Equations (116)–
(117), we obtain the following closed system of equations
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Note that, using Equation (223), Equations (226) and (227) can
be recast as two coupled evolution equations for the perpendic-
ular and parallel components of the perturbed magnetic field,
respectively (Equations (C10) in Appendix C.2).

We shall refer to Equations (226)–(227) as electron reduced
MHD (ERMHD). They are related to the electron magnetohy-
drodynamics (EMHD)—a fluid-like approximation that evolves
the magnetic field only and arises if one assumes that the mag-
netic field is frozen into the electron flow velocity ue, while the
ions are immobile, ui = 0 (Kingsep et al. 1990):
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= − c
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As explained in Appendix C.2, the result of applying the
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tion (228), where B = B0ẑ + δB and
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= 1
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, (229)

coincides with our Equations (226)–(227) in the effectively in-
compressible limits of βi & 1 or βe = βiZ/τ & 1. When betas
are arbitrary, density fluctuations cannot be neglected compared
to the magnetic-field-strength fluctuations (Equation (225)) and
give rise to perpendicular ion flows with ∇ · ui '= 0. Thus, our
ERMHD system constitutes the appropriate generalization of
EMHD for low-frequency anisotropic fluctuations without the
assumption of incompressibility.

A (more tenuous) relationship also exists between our ER-
MHD system and the so-called Hall MHD, which, like EMHD,
is based on the magnetic field being frozen into the electron flow,
but includes the ion motion via the standard MHD momentum
equation (Equation (8)). Strictly speaking, Hall MHD can only
be used in the limit of cold ions, τ = T0i/T0e ( 1 (see, e.g.,
Ito et al. 2004; Hirose et al. 2004, and Appendix E), in which
case it can be shown to reduce to Equations (226)–(227) in the
appropriate small-scale limit (Appendix E). Although τ ( 1
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is not a natural assumption for most space and astrophysical
plasmas, Hall MHD has, due to its simplicity, been a popular
theoretical paradigm in the studies of space and astrophysical
plasma turbulence (see Section 8.2.6). We have therefore de-
voted Appendix E to showing how this approximation fits into
the theoretical framework proposed here: namely, we derive the
anisotropic low-frequency version of the Hall MHD approx-
imation from gyrokinetics under the assumption τ ( 1 and
discuss the role of the ion inertial and ion sound scales, which
acquire physical significance in this limit. However, outside this
Appendix, we assume τ ∼ 1 everywhere and shall not use Hall
MHD.

The validity of the ERMHD equations as a model for
plasma dynamics in the dissipation range is further discussed in
Section 7.6.

7.3. Kinetic Alfvén Waves

The linear modes supported by ERMHD are kinetic Alfvén
waves (KAW) with frequencies

ωk = ±

√
1 + Z/τ

2 + βi (1 + Z/τ )
k⊥ρik‖vA. (230)

This dispersion relation is illustrated in Figure 8: note that the
transition from Alfvén waves to dispersive KAW always occurs
at k⊥ρi ∼ 1, even when βi ( 1 or βi & 1. In the latter case,
there is a sharp frequency jump at the transition (accompanied
by very strong ion Landau damping).

The eigenfunctions corresponding to the two waves with
frequencies (230) are
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Using Equations (229) and (223), the perturbed magnetic-field
vector can be expressed as follows
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so, for a single “+” or “−” wave (corresponding to Θ−
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k = 0, respectively), δBk rotates in the plane perpendicular to
the wave vector k⊥ clockwise with respect to the latter, while
the wave propagates parallel or antiparallel to the guide field
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Kinetic Alfvén Waves 

Linear wave solutions: 

Start with GK, consider the scales such that  
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KAW Turbulence 

•  Critical balance + constant flux argument à la K41/GS95 give 
             spectrum of  magnetic field with anisotropy   

•  There is a cascade of  KAW,  

•  Electric field has           spectrum because 

Start with GK, consider the scales such that  

[Biskamp et al. 1996, PRL 76, 1264; Cho & Lazarian 2004, ApJ 615, L41] 

Linear wave solutions: 

•  Recent modification of  the theory by Boldyrev amends the 
  spectrum to             by restricting cascade to 2D sheets [arXiv:1204.5809]     

•  NB: none of  this takes into account Landau damping 



Sub-Larmor Cascade: 3D GK DNS (by G. Howes) 
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Sub-Larmor Cascade: Solar Wind 

[Alexandrova et al. 2009, PRL 103, 165003] 

1. Power law spectra all the way 
to electron gyroscale despite 
electron Landau damping 
2. Strong turbulence, but linear 
KAW relationships between 
fluctuating fields survive 
3. Ions are heated via entropy 
cascade at collisional scale, 
even though ion Landau damping 
is at ion gyroscale 
4. Magnetic spectrum ~ 
which is steeper than KAW  
standard result –7/3 (perhaps 
closer to Boldyrev’s –8/3) 
and in close agreement with 
solar wind data 



Sub-Larmor Cascade: Solar Wind 

[Saharaoui et al. 2010, PRL 105,131101] 

1. Power law spectra all the way 
to electron gyroscale despite 
electron Landau damping 
2. Strong turbulence, but linear 
KAW relationships between 
fluctuating fields survive 
3. Ions are heated via entropy 
cascade at collisional scale, 
even though ion Landau damping 
is at ion gyroscale 
4. Magnetic spectrum ~ 
which is steeper than KAW  
standard result –7/3 (perhaps 
closer to Boldyrev’s –8/3) 
and in close agreement with 
solar wind data 



Conclusions 
•  Kinetic turbulence is a free-energy cascade in phase space 
  towards collisional scales 
•  Gyrokinetics is a good approximation for magnetised turbulence  
•  In gyrokinetic turbulence, a fast nonlinear perpendicular 
  phase-mixing mechanism allows small-scale structure to emerge 
  simulataneously in physical and velocity space (“entropy cascade”) 
•  We still need to understand how linear (⏐⏐) and nonlinear (⊥) 
  phase mixing compete/coexist 
•  The free energy cascade splits into various channels: 
    AW + compressive above ion gyroscale (“inertial range”) 
    KAW + entropy cascade below ion gyroscale (“dissipation range”) 
•  The splitting at the ion gyroscale determines the relative heating  
  of  the two species energy partition 
•  Structure of  kinetic cascades (KAW turbulence, entropy cascade, 
  compressive cascade) is interesting in its own right (and measurable!)  

AAS et al. 2008, PPCF 50, 124024 [arXiv:0806.1069] 
AAS et al. 2009, Astrophys. J. Suppl. 182, 310 [arXiv:0704.0044] 
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