Radiative processes in high energy astrophysical plasmas

École de physique des Houches

23 Février-8 Mars 2013

R. Belmont
Why radiation?

✓ Why is radiation so important to understand?
 ✓ Light is a tracer of the emitting media
 ✓ Geometry, evolution, energy, magnetic field...
 ✓ Light can influence the source properties
 ✓ cooling/heating, radiation pressure...
 ✓ Light can be modified after its emission

✓ Why are high energy plasmas so important to study?
 ✓ High energy particles are the most efficient emitters
 ✓ They emit over an extremely wide range of frequencies
✓ Goals of this course:
 ✓ Review the main high energy processes for continuum emission
 ✓ Assumptions, approximations, properties
 ✓ Show how they can be used to constrain the physics of astrophysical sources

✓ Main books/reviews:
 ✓ Aharonian F. A., 2004, Very High energy cosmic gamma radiation, World scientific publishing
Contents

✓ Introduction

✓ I. Emission of charged particles

✓ II. Cyclo-Synchrotron radiation
✓ III. Compton scattering
✓ IV. Bremsstrahlung radiation
Introduction
Non black-body radiation

✓ Black-Body radiation is simple ideal limit
 ✓ independent of internal processes, geometry...
 ✓ Simple law

✓ No black body radiation if:
 ✓ Optically thin media
 ✓ <= finite source size and finite interaction cross sections
 ✓ => absorption/emission/reflection features
 ✓ Matter not at thermal equilibrium
 ✓ <= low density, high energy plasmas

✓ Then, radiation properties depend on
 ✓ The particle distributions
 ✓ The microphysics: what processes?
Radiation processes

✓ Lines (bound-bound):
 ✓ Atomic, molecular transitions (radio to X-rays)
 ✓ Nuclear transitions (γ-rays)

✓ Edges (bound-free):
 ✓ ionization/recombination

✓ Nuclear reactions, decay and annihilations:
 ✓ bosons, pions...
 ✓ electron-positron, photon-photon

✓ Collective processes
 ✓ Faraday rotation, Cherenkov radiation...

✓ Free-free radiation of charged particles in vacuum:
 ✓ Cyclo-synchrotron radiation
 ✓ Compton scattering
 ✓ (Bremsstrahlung radiation)
I. Radiation of relativistic particles
Emission from non-relativistic particles

- Electro-magnetic field created by charges in motion:
 - Charged particles in uniform motion do not emit light
 - Only charged, accelerated particles can emit light
 - Liénard-Wiechert potentials (1898): \((A, \Phi) \Rightarrow E-B\)
 - Power: \(P \propto E^2\)
 - Spectrum: \(P_\nu \propto \left| \text{FFT}(E) \right|^2\)

- Emission of low-energy particles:
 - Total power: \(P_e = \frac{2q^2a^2}{3c}\)
 - Dipolar field perpendicular to acceleration: \(\frac{\partial P_e}{\partial \Omega} = \frac{q^2a^2}{4\pi c} \sin^2 \theta\)
 - Polarization depends on the direction: \(\vec{E} \propto \vec{n} \times (\vec{n} \times \vec{a})\)
 - Is also the emission in the particle rest frame...
Emission of relativistic particles

Change of frame

✓ Relativistic particles:

 ✓ Velocity \(\beta = v/c \)
 ✓ Lorentz factor \(\gamma = 1/(1 - \beta^2)^{1/2} \)
 ✓ Energy \(E = \gamma mc^2 \) \(E_K = (\gamma - 1)mc^2 \)
 ✓ Momentum \(p = (\gamma^2 - 1)^{1/2} = \beta \gamma \)

✓ Let’s consider a particle

 ✓ moving at velocity \(\beta \) as seen in the observer frame K in the parallel direction
 ✓ emitting radiation in its rest frame K’

✓ Total emitted power:

 ✓ Is a Lorentz invariant: \(P_e = P'_e = \frac{2q^2 a'^2}{3c} \)
 ✓ Acceleration is not: \(a'_\perp = \gamma^2 a_\perp \) \(a'_\parallel = \gamma^3 a_\parallel \)
 ✓ Emission of relativistic particles strongly enhanced: \(P_e = \frac{2q^2}{3c} \gamma^4 \left(\gamma^2 a_\parallel^2 + a_\perp^2 \right) \)
 ✓ High energy sources are amongst the most luminous sources...
Emission of relativistic particles

Relativistic beaming

✓ Angles: an example
 ✓ Emitting body moving at velocity v
 ✓ Photon emitted perpendicular to motion in the body frame
 ✓ Photon
 ✓ must fly at c in all frames
 ✓ observed with parallel velocity v
 ✓ observed with perpendicular velocity c/γ
 ✓ observed with an angle $\sin \theta = 1/\gamma$

✓ Angular distribution of emission:

$$ \frac{\partial P_r}{\partial \Omega} = \frac{1}{\gamma^4 (1 - \beta \cos \theta)^4} \frac{\partial P'_e}{\partial \Omega'} $$

✓ beaming
✓ enhancement
Emission of relativistic particles

Relativistic beaming

✓ The dipolar emission of charge particles:
 ✓ The angular distribution depends on the (a,v) angle

✓ Beaming is still present and $\theta \approx 1/\gamma$
Cyclo-Synchrotron radiation

- Emitted power
- Spectrum
- Radiation from many particles
- Polarization
- Self-absorption
Synchrotron in astrophysics

✓ Applications to astrophysical sources started in the mid 20th
✓ Most observations in radio but also at all wavelengths
Cyclo-synchrotron radiation

✓ Radiation from particles gyrating the magnetic field lines
✓ Relativistic gyrofrequency \(\nu_B = \frac{qB}{2\pi mc} \quad \nu_{B,r} = \frac{1}{\gamma} \frac{qB}{2\pi mc} \)
✓ Assumptions:
 ✓ Classical limit: \(h\nu_B << mc^2 \quad B < B_c = 12 \times 10^{12} \text{ G} \)
 ✓ Otherwise: quantization of energies, Larmor radii...
 ✓ Observable cyclotron scattering features in accreting neutron stars...
 ✓ B uniform at the Larmor scale (parallel and perp)
 ✓ ! no strong B curvature (pulsars and rapidly rotating neutron stars)
 ✓ ! no small scale turbulence (at the Larmor scale)
 ✓ ! no large losses (\(t_{\text{cool}} >> 1/\nu_{B,r} \))
✓ Emission/Absorption
Emitted Power and cooling time

✓ Circular motion: \(a = a_\perp = \frac{\nu_B}{2\pi\gamma} v_\perp \)

✓ Emission of an accelerated particle: \(P = \frac{2q^2}{3c^3} \gamma^4 a_\perp^2 = 2c\sigma_T U_B p_\perp^2 \)
 ✓ Power goes as \(p^2 \)
 ✓ Power goes as \(B^2 \)

✓ Isotropic distribution of pitch angles: \(P = \frac{4}{3} c\sigma_T U_B p^2 \)

✓ Cooling time: \(t_{\text{cool}} = \frac{\gamma m c^2}{P_e} \approx \frac{25\text{yr}}{B^2\gamma} \)
 ✓ ISM (\(B=1\mu G \)): \(t_{\text{cool}} > t_{\text{universe}} \) as far as \(\gamma < 10^3 \)
 ✓ AGN jets (\(B=10\mu G, \gamma=10^4 \)): \(t_{\text{cool}} = 10^7\text{yr} \) (=travel time!)

✓ Maximal loss limit \(t_{\text{cool}} > > \frac{1}{\nu_{B,r}} \quad \gamma^2 B < \frac{2q}{r_0^2} \)
Cyclo-synchrotron radiation

Emission Spectrum

Very low energy particles:

- Sinus modulation of the electric field at \(\nu_B \):

\[
\nu = \nu_B \sin^2 \theta
\]

- Spectrum = one cyclotron line at \(\nu_B = \nu_{B,r} \)
Cyclo-synchrotron radiation

Emission Spectrum

Mid-relativistic particles:

- Moderate beaming
- Asymmetrical modulation of the electric field at $\nu_{B,r}$:
- Spectrum = many harmonic lines at $k\nu_{B,r} = k\nu_B/\gamma$

![Graph showing emission spectrum with logarithmic scale for ν/ν_e vs. $P_0 = 2\sigma c U_b \rho^2 \sin^2 \alpha$]
Cyclo-synchrotron radiation ●●●●●●○○○○○○○○○

Emission Spectrum

Ultra-relativistic particles:

✓ Strong beaming: \(\delta \theta = 1/\gamma \)

✓ Pulsed modulation of the electric field at \(v_B \):

\[\delta t \approx \frac{1}{(\nu B, r \gamma^3)} \]

✓ Spectrum = continuum up to

\[\nu_c = \frac{3}{2} \gamma^2 \nu_B \sin \alpha \]
Emission Spectrum

\[\frac{\partial^2 P}{\partial (\nu/\nu_B) \partial \Omega} = 4 \sigma_T c U_B \beta^2 \frac{\nu^2}{\nu_B^2} \sum_{n=1}^{\infty} \left[n^2 \frac{(\cos \theta - \beta_\parallel)^2}{(1 - \beta_\parallel \cos \theta)^2} \frac{J_n^2(x)}{x^2} + J_n'(x) \right] \delta \left[\frac{\nu}{\nu_B} (1 - \beta_\parallel \cos \theta) - \frac{n}{\gamma} \right] \]

\[x = (\nu/\nu_B) \beta_\perp \sin \theta \]

- Exact spectrum depends on:
 - the particle energy
 - the pitch angle \(\alpha \): \(\cos \alpha = \beta_\parallel / \beta \)
 - the observation angle \(\theta \) with respect to \(B \)

- Line broadening results from integration over:
 - Observation direction
 - Particle pitch angle
 - Particle energy
Cyclo-synchrotron radiation

Spectrum of Relativistic Particles

- High energy plasmas have a continuous spectrum:
 \[
 \frac{\partial P}{\partial (\nu/\nu_B)} = 12\sqrt{3}\sigma T c U_B G \left(\frac{\nu}{2\nu_*} \right)
 \]

- Peaks at the critical frequency:
 \[
 \nu_* = \frac{3}{2} \nu_B \gamma^2 \propto B \gamma^2
 \]

- Most of the emission is at \(\nu_* \)
 - AGN (\(B=10\mu G, \gamma=10^4 \)): 10cm
 - Crab nebula (\(B=0.1mG, \gamma=10^7 \)): 10 keV

- Highest possible energy of photons:
 \[
 \gamma^2 B < \frac{2q}{\nu_0^2} \quad h\nu = 3m_e c^2 / \alpha_f \approx 70\text{MeV}
 \]
Spectrum of many particles

- Emission integrated over the particle distribution: \(\dot{j}_\nu = \int P_\nu(\nu, \gamma) f(\gamma) d\gamma \)

- Thermal distribution: \(f(\gamma) \propto \gamma^2 e^{-\gamma/\theta} \)
 - Same as for a single particle for the mean energy.

- Power-law distribution: \(f(\gamma) \propto \gamma^{-s} \)
 - Integrated emission:
 \[
 \dot{j}_\nu \propto \int G(3\nu/2\nu_B \gamma^2) \gamma^{-s} d\gamma \\
 \propto \nu^{-(s-1)/2} \int x^{(s-3)/2} G(x) dx \\
 \propto \nu^{-\alpha}
 \]
 - Power-law spectrum with
 - slope: \(\alpha = \frac{s-1}{2} \)
 - minimal energy: \(\nu_{\text{min}} \propto B\gamma_{\text{min}}^2 \)
 - maximal energy: \(\nu_{\text{max}} \propto B\gamma_{\text{max}}^2 \)
The Crab Nebula

- Pulsar wind nebula
 - Outflow of high energy electrons
 - Magnetized medium (0.1 mG)
- Synchrotron emission from radio to \(\gamma \)-rays
- Broken power-law distribution
 - Two slopes: \(s_1 \), \(s_2 \)
 - Two breaks: \(\gamma_1 \), \(\gamma_2 \)
Cyclo-synchrotron radiation

Polarization

✓ One single particle produces a coherent EM fluctuation
 ✓ Intrinsically polarized: elliptically
 ✓ Depends on p, α and θ

✓ Turbulent magnetic field: no net polarization

✓ Ordered magnetic field:
 ✓ Ensemble of particles with random pitch angles => partially linearly polarized
 ✓ Polarization angle perpendicular to observed B: $P_\perp >> P_\parallel$
 ✓ High polarization degree: $\Pi(\nu, p) = \frac{P_\perp - P_\parallel}{P_\perp + P_\parallel}$
 ✓ depends on frequency and particle energy
 ✓ averaged over all frequencies: $\Pi=75\%$
 ✓ In average over PL distribution of particles: $\Pi=(s+1)/(s+7/3)$
Cyclo-synchrotron radiation ●●●●●●●○○○

Polarization

✓ Such high polarization is characteristic of synchrotron radiation
✓ Measure of the direction gives the direction of B

Crab nebula

M87
Synchrotron self-absorption

\[j_\nu = n \frac{\partial P}{\partial \nu \partial \Omega} \]

absorption coefficient:

\[\alpha_\nu(p, \nu) = \frac{c^2}{2h\nu^3} \frac{1}{p\gamma} \left[\gamma p j_\nu \right]_{\gamma + h\nu/mc^2} \]

\[\approx \frac{1}{2m\nu^2} \frac{1}{p\gamma} \partial_\gamma (\gamma p j_\nu) \]

✓ Absorption decreases with frequency
 ✓ high energy photons are weakly absorbed
 ✓ low energy photons are highly absorbed

Cyclo-synchrotron radiation ●●●●●●●●●●●●●○○

Synchrotron self-absorption

Spontaneous emission

True absorption

Stimulated emission (negative absorption)
Cyclo-synchrotron radiation

Synchrotron self-absorption

 ✓ Radiation transfer:
 ✓ Equation for specific intensity I_ν: \[\frac{\partial I_\nu}{\partial l} = j_\nu - \alpha_\nu I_\nu \]
 ✓ Solution for a uniform layer of thickness L: \[I_\nu = \frac{j_\nu}{\alpha_\nu} \left(1 - e^{-\alpha_\nu L}\right) \]

 ✓ $\tau_\nu=\alpha_\nu L$ is the optical depth at energy $h\nu$
 ✓ When $\tau_\nu<<1$: thin spectrum
 ✓ When $\tau_\nu>>1$: thick spectrum
 ✓ transition for: $\tau_\nu = \alpha_\nu L \approx 1$

 ✓ The transition energy increases with optical depth, i.e. with:
 ✓ Physical thickness of the layer
 ✓ Density of the medium
Self-absorbed Spectra

✓ Thermal distribution

Rayleigh-Jeans $F_\nu \propto \nu^2$

Tends to BB radiation in the thick part

✓ Power-law distribution

$F_\nu \propto \nu^{5/2}$

Does not tend to BB radiation in the thick part
Compton Scattering

- Thomson/Klein-Nishina regimes
- Spectrum, angular distribution
- Particle cooling
- Multiple scattering
Compton scattering

In the particle rest frame

- Scattering of light by free electrons
- Result described by 6 quantities
- 4 Conservation laws:
 - Energy: $h\nu_0 + mc^2 = h\nu + \gamma mc^2$
 - Momentum: $\frac{h\nu_0}{c} \vec{n}_0 = \frac{h\nu}{c} \vec{n} + mc\vec{p}$
- 1 symmetry
- One quantity is left undetermined, e.g. the scattering angle θ
- Direction/energy relation: $\frac{h\nu}{h\nu_0} = \frac{1}{1 + \frac{h\nu_0}{mc^2} (1 - \cos \theta)}$
- Photon loose energy in the particle rest frame
- Two regimes:
 - The Thomson regime ($h\nu_0 < mc^2$): coherent scattering: $h\nu = h\nu_0$
 - The Klein-Nishina regime ($h\nu_0 > mc^2$): incoherent scattering: $h\nu < h\nu_0$
Compton scattering

Thomson scattering

✓ Scattering of linearly polarized waves:
 ✓ Harmonic motion of the particle
 ✓ Emission of light in all directions

✓ Scattering of unpolarized waves:
 ✓ Average of linearly polarized waves with random directions

✓ Scattered power: \(\frac{\partial P}{\partial \Omega} = \frac{\partial \sigma}{\partial \Omega} F \)

✓ Thomson cross section: \(\frac{\partial \sigma}{\partial \Omega} = \frac{3}{8 \pi} \sigma_T \frac{1 + \cos^2 \theta}{2} \)

✓ Total cross section: \(\sigma_T = 6.65 \times 10^{-25} \text{cm}^2 \)

✓ Partially polarized: \(\Pi = \frac{1 - \cos^2 \theta}{1 + \cos^2 \theta} \)

✓ Spectrum: a line at the incident frequency
Klein Nishina scattering

✓ Requires quantum mechanics but still analytical formulae

Total cross section:

\[\sigma = \sigma_T \frac{3}{4} \left[\frac{1 + \omega_0}{\omega_0^3} \left(\frac{2\omega_0(1 + \omega_0)}{1 + 2\omega_0} - \ln \left(1 + 2\omega_0\right)\right) + \frac{\ln \left(1 + 2\omega_0\right)}{2\omega_0} - \frac{1 + 3\omega_0}{(1 + 2\omega_0)^2} \right] \]

Differential cross sections:

\[\frac{d\sigma}{d\Omega} = \sigma_T \frac{3}{16\pi} \left(\frac{h\nu}{h\nu_0} \right)^2 \left(\frac{h\nu_0}{h\nu} + \frac{h\nu}{h\nu_0} - \sin^2 \theta \right) \]

Angular distribution:

Spectrum:

\(h\nu = mc^2 \)

Compton scattering ●●●●●●●●●●

Klein-Nishina scattering

Thomson Regime

Klein-Nishina Regime

\(\sigma \approx \sigma_T \)
In the source frame

✓ In the particle frame: one incident parameter \((h\nu_0) \)

✓ In the source frame: new dependance on
 ✓ The particle energy
 ✓ The collision angle

✓ Photon can now gain/loose energy

✓ An example:
 ✓ Head-on collision:
 ✓ Cold photon \(h\nu_0 \) and relativistic electron \(\gamma_0 \gg 1 \)
 ✓ Photon energy in the particle frame: \(\nu'_0 = 2\gamma_0\nu_0 \)
 ✓ Thomson backward scattering: \(h\nu'_0 \ll mc^2 \)
 ✓ Emitted photon energy in the electron frame: \(\nu' = \nu'_0 \)
 ✓ Photon energy in the source frame: \(\nu = 2\gamma_0\nu' \)
 ✓ In the end: \(\nu = 4\gamma_0^2\nu_0 \)
 ✓ Compton up-scattering

✓ Often: isotropy assumption and average over angles
Compton scattering

In the source frame

- For isotropic distributions:
- The Thomson limit: $\gamma_0 h\nu_0 << mc^2$
- The scattered spectrum:
- Average energy of scattered photons
 - Down scattering: $(\gamma_0 - 1)mc^2 < h\nu_0$
 - Up-scattering: $(\gamma_0 - 1)mc^2 > h\nu_0$
 - Amplification factor:
 $$A = \frac{<h\nu>}{h\nu_0} \approx \gamma^2$$
- Scattering by relativistic plasmas produces high energy radiation
- Particle cooling:
 $$\frac{\partial E_p}{\partial t} = \frac{4}{3} c\sigma_T p^2 U_{ph}$$
Blazar Spectra

- $E > \text{TeV}$! Comptonization?
- Model = Synchrotron Self-Compton (SSC) + Doppler boosting
 - Seed photons = synchrotron photons
 - The same particle emit though synchrotron and scatter these photons
- Here:
 - $A=10^8 \Rightarrow \gamma=10^4$
 - $h\nu_0 = 0.1 \text{ keV} \Rightarrow \text{KN regime}$
 - Synchrotron peaks at $B\gamma^2$, Compton amplifies with $A=\gamma^2 \Rightarrow B!$
Compton scattering ●●●●●●●○○○○○

Single scattering by many electrons

✓ Emission integrated over the particle distribution

✓ Thermal distribution: \(f(\gamma) \propto \gamma^2 e^{-\gamma/\theta} \)
 ✓ Same as for a single particle for the mean energy..

✓ Power-law distribution: \(f(\gamma) \propto \gamma^{-s} \)
 ✓ Power-law spectrum with
 ✓ slope: \(\alpha = \frac{s - 1}{2} \)
 ✓ minimal energy: \(h\nu_0 \gamma^2_{\text{min}} \)
 ✓ maximal energy: \(h\nu_0 \gamma^2_{\text{max}} \)

✓ Scattered photons distributions should also be integrated over the source seed photons
Multiple Scattering

✓ Photons can undergo successive scattering events

✓ Medium of finite size L: Thomson optical depth: $\tau_T = n_e \sigma_T L$

✓ Competition scattering/escape:
 ✓ τ (or τ^2) = Mean number of scattering before escape
 ✓ $\tau<1$: single scattering
 ✓ $\tau>1$: multiple scattering

✓ y parameter = $<\text{photon energy change}>$ before escape
 ✓ $y = <\text{Energy change per scattering}> \times <\text{scattering number}>$
 ✓ For mono-energetic particles: $y = \tau \gamma^2$
 ✓ For thermal distributions: $y = 4\tau \theta (1+4\theta)$
The SZ effect

Compton scattering

Cold photons

\(k_B T_{ph} = 2.7 \text{ K} \)

Hot electrons

\(k_B T_e = 1-10 \text{ keV} \) \((\theta_e = k_B T_e / m_e c^2 \approx 10^{-2}, p \approx \beta \approx 0.1) \)

\(\tau = N_e \sigma_T L \approx 10^{-2} \)

- Typical distortion whose amplitude gives: \(y \approx \tau \theta \approx 10^{-4} \)
- Bremsstrahlung gives \(T \)
- \(\Rightarrow \) density...
Compton scattering

Compton orders

\[\frac{h\nu_0}{mc^2} = 10^{-7} \]
\[\gamma_0 = 10 \]
\[A = 100 \]

bumpy spectrum

cutoff at the particle energy

\[\tau \Rightarrow \text{spectrum hardness} \]
Compton scattering

Compton regimes

Sub-relativistic particles: \(\frac{h \nu_0}{mc^2} < p < 1 \)
- Thomson regime \(h \nu_0 \gamma_0 \ll mc^2 \)
- Inefficient scattering: \(A = 1 \)

Relativistic particles: \(\gamma_0 \gg 1 \)
- Thomson regime: \(h \nu_0 \gamma_0 \ll 1 \)
- Efficient scattering: \(A \gg 1 \)

Ultra-relativistic particles: \(\gamma_0 \gg 1 \)
- KN regime: \(h \nu_0 \gamma_0 > mc^2 \)
- Efficient scattering: \(A \gg 1 \)

Power-law spectrum
- cutoff at the particle energy
- Slope = \(\ln(\tau)/\ln(A) \)

\(\Rightarrow X\text{-ray binaries} \)

One-bump spectrum
- single scattering

\(\Rightarrow \text{AGN/Blazars} \)
Compton scattering

X-ray binaries

✓ Soft states:
 ✓ Multi-color black body at 1 keV from the accretion disk
 ✓ Non-thermal comptonization in a hot corona ($\tau=1$)

✓ Hard states:
 ✓ Soft photons from the accretion disk or synchrotron
 ✓ Inefficient thermal Comptonization in a hot corona (100 keV, $\tau=0.01$)

✓ What heating acceleration mechanism?

Zdziarsky 2003
Bremsstrahlung radiation
Bremsstrahlung

✓ Radiation of charged particles accelerated by the Coulomb field of other charges

✓ Astrophysical sources:
 ✓ Some modes of hot accretion disks
 ✓ Hot gas of intra-cluster medium (1-10 keV)
 ✓ ...

...
Easy bremsstrahlung

✓ Assumptions:
 ✓ Classical physics
 ✓ Sub-relativistic particles
 ✓ Far collision (small deviation, no recombination)
 ✓ Small energy change ($\Delta v \ll v$ i.e. $h\nu \ll mv^2/2$)

✓ Single event
 ✓ No p^+/p^+, e^-/e^-, e^+/e^+ Bremsstrahlung
 ✓ p^+/e, iZ^+/e Bremsstrahlung
 ✓ Approximation: static heavy iZ^+

✓ Approximated motion:
 ✓ Typical collision time: $\tau \approx 2b/v$
 ✓ Typical velocity change: $\Delta v \approx \tau a \approx \tau Z e^2/(mb^2) \approx 2Ze^2/(mvb)$
 ✓ τ and Δv characterize the motion = enough to compute the spectrum
Easy bremsstrahlung

✓ Spectrum: \(\frac{\partial P}{\partial \nu} \propto \left| FFT(\tilde{E}) \right|^2 \propto \left| FFT(\tilde{a}) \right|^2 \)

✓ Fourier transform: \(TF[\dot{\nu}] = \int_{-\infty}^{+\infty} \dot{\nu}(t) e^{-2i\pi \nu t} dt \approx \begin{cases} 0 & \text{if } \nu \tau \gg 1 \\ \Delta \nu & \text{if } \nu \tau \ll 1 \end{cases} \)

✓ One single particle produces a flat spectrum:
\[
\frac{\partial E}{\partial \nu}(v, b) \approx \begin{cases} 0 & \text{if } \nu \tau \gg 1 \\ \frac{16e^6 \nu^2}{3c^3 m^2 v^2 b^2} & \text{if } \nu \tau \ll 1 \end{cases}
\]

✓ Many particles with a range of impact parameters:
 ✓ with \(b_{\min} \) from the small angle approximation
 ✓ with \(b_{\max} \) from \(\nu \tau < 1 \)
\[
\frac{\partial P}{\partial V \partial \nu} = n_i n_e v \int_{b_{\min}}^{b_{\max}} \frac{\partial E}{\partial \nu} 2\pi b db = \frac{32\pi e^6}{3m^2 c^3 v} n_i n_e g_{\text{ff}}(v, \nu)
\]

✓ Produce a flat spectrum that cuts at the electron energy
✓ Total losses: \(P_{\text{cool}} \propto n_i n_e Z^2 v \)
Emission from many electrons

✓ Emission integrated over the particle distribution
✓ Power-law distributions produce power-law spectra
✓ Thermal distributions:
 ✓ Emission coefficient: $j_\nu \propto n_i n_e Z^2 T^{-1/2} e^{-\hbar \nu/k_B T}$
 ✓ Total losses: $P_{cool} \propto n_i n_e Z^2 T^{1/2}$
✓ Relativistic and quantum correction can be added to give more general spectra
✓ In media of finite size: bremsstrahlung self-absorption at low energy
 ✓ c.f. synchrotron
Summary

✓ Particle cooling:
 ✓ Synchrotron: \(P \propto \sigma_T p^2 U_B \)
 ✓ Compton in the Thomson regime: \(P \propto \sigma_T p^2 U_{ph} \)
 ✓ Bremsstrahlung: \(P \propto \sigma_T \alpha_f p U_i \) (with \(U_i = n_i m_e c^2 \))

✓ Photons:
 ✓ Synchrotron:
 ✓ Thin spectrum of 1 particle peaks at \(\nu_c \propto \gamma^2 B \)
 ✓ Thin spectrum of a power-law distribution is a power-law
 ✓ Absorption \(\Rightarrow \) Thick spectrum at low frequency
 ✓ Compton
 ✓ Amplification factor in the Thomson regime: \(A = \gamma^2 \)
 ✓ Mildly relativistic particles: power-law spectrum
 ✓ Comptonization by a relativistic power-law distribution is a PL spectrum
 ✓ Bremsstrahlung
 ✓ Flat spectrum
 ✓ up to the particle energy