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Space plasmas are magnetized and turbulent
with essentially no collision.

β ≈ 1, Ms ≈ 1

Fluctuations: power-law spectra 
extend to ion gyroscale and below

Dispersive and kinetic effects cannot be ignored.

Presence of coherent structures (filaments, shocklets, magnetosonic solitons, 
magnetic holes) with typical scales of  a few ion Larmor radii.

The concepts  of waves make sense even in the strong turbulence regime

.

Main features of Space plasmas

solar
wind



1. Spectral energy distribution and its anisotropy in the solar wind 

Space plasmas: debated questions

Sahraoui et al. PRL 102, 231102 (2009)

k-filtering -> θ=86°
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Alexandrova et al. Planet. Space Sci. 55, 2224 (2007)

Excess of magnetic energy in the transverse components
Several power-law ranges: Are they cascades? which waves? which slopes? Important to estimate the 
heating rates. 



Heating of protons via
Landau damping ?

From Sahraoui et al. PRL (2010).

Does the anisotropy persist 
at small scales?

At what scale does dissipation take place? 
By which mechanism? 
Role of ion and electron Landau damping ?



Alexandrova et al. JGR 111, A12208 (2006).

Drift Kinetic Alfvén Vortices also 
observed in the cusp region.
(Sundkvist et al. Nature, Aug.; 2005)

and of coherent structures:

- Current filaments 
- Mirror structures (magnetic holes and humps)

2. Main features of Terrestrial magnetosheath plasm a

Important role of the temperature anisotropy: 
AIC (near quasi-perpendicular shock) and mirror instabilities (further inside magnetosheath)

Domination of mirror modes
spatial spectrum steeper than temporal one

Alfvén vortices

Here identified as mirror modes using k-filtering technique
(Pinçon & Lefeuvre,  JGR 96, 1789; 1991):
modes with essentially zero frequency in the plasma frame

Sahraoui et al. PRL 2006



Fast magnetosonic shocklets
(Stasiewicz et al. GRL 2003) 

Slow magnetosonic solitons
(Stasiewicz et al. PRL 2003)

Mirror structures in the terrestrial 
magnetosheath

(Soucek et al.JGR 2008)

Signature of magnetic filaments
(Alexandrova et al. JGR 2004)



Turbulence (and/or solar wind expansion) generate  temparature anisotropy
This anisotropy is limited by mirror and oblique firehose instabilities.
Role of anisotropy on the turbulence « dissipative range»?

Bale et al. PRL 103, 21101 (2009);
see also Hellinger et al. GRL 33, L09101 (2006).

color: magnitude of δB; enhanced δB also corresponds
to enhanced proton heating.

2. Heating of the plasma: temperature anisotropy and resulting micro-instabilities



How to construct a fluid model for collisionless plasmas ?

One needs a fluid model that

• retains low-frequency kinetic effects: Landau damping and FLR corrections
• can be integrated relatively fast
• allows for strong temperature anisotropies 
• does not a priori order out the fast magnetosonic waves.

Requirements: The model should

• reproduce the linear properties of low-frequency waves.
• ensure that the system does not develop spurious instabilities at scales smaller 
than its range of validity, and thus remains well-posed in the nonlinear regime.

Such a fluid model could also prove useful to provide initial and/or boundary
conditions for Vlasov simulations.



The various fluid approaches



Still many open problems:

The turbulent regime is not totally understood (see Boldyrev’s lecture)
(various theories : Iroshnikov-Kraichnan 1965, Goldreich-Sridhar 1995, Perez & Boldyrev 2009).

This model has many advantages:

Possibility to identify two conserved quantities ( ∫(z± )2 where z± =u±b)
which separately cascade towards small scales.

Existence of an exact law, analogous to the 4/5 law of Karman-Howarth 
for homogeneous isotropic turbulence, giving statistics of 3rd order moments for    

velocity increments (Politano & Pouquet, GRL 25, 273; 1998) and allowing
for the estimation of turbulent heating (Sorriso-Valvo et al. PRL 99, 115001 (2007))

Incompressible MHD

Drastic approximation, that assumes the presence of collisions;  valid at very large scales.
Allows one to focus mainly on nonlinear phenomena.



Reduced MHD

In the presence of a strong ambient field, the dynamics is essentially decoupled,
even for finite beta, between:

- Incompressible MHD in the planes transverse to B0 

- Alfvén waves parallel to B0

Reduced MHD can be derived from gyrokinetic theory (Schekochihin, ApJ. sup. 2009).



To account for « temporal » dispersive effects at scales of the order or smaller than di:

If diffusive term and electron pressure are neglected:

E=-Ue x B

Decoupling of electron and ion velocities.
The magnetic field however remains frozen in the electron flow.

With an ambient field and in the linear approximation: dispersive effects lead to separation 
of AWs into whistlers and ion cyclotron modes.

Replace Ohm’s law E=-U x B by a more general expression.
After taking electron velocity equation, neglecting electron inertia, write:

Hall MHD



Both in the weak turbulence regime and in a shell model (Galtier and Buchlin ApJ 2007), 
incompressible Hall-MHD is able to capture a transition from an AW cascade at large 
scale, towards another type of cascade dominated by the Hall nonlinearity.

Transition at the ion inertial length: di=vA/Ω

Incompressible limit only valid only in the limit β-> ∞ (Sahraoui et al. JPP ‘07)

In the dispersive case, it is possible to derive a 4/5 law (Galtier, PRE 77, 015302 (R); 2008)
and to develop a theory of weak turbulence (Galtier, JPP 2006).



In the presence of an ambient field, the Hall term
induces dispersive effects.

Hall term

Ti << Te 

ω<<Ωi
k|| vthi<<ω<<k|| vthe

It correctly reproduces whistlers and KAW’s for small to moderate β.

It contains waves that are usually damped in a collisionless plasma
and whose influence in the turbulent dynamics has to be evaluated.

Hall-MHD is a rigorous limit of collisionless kinetic theory for:

Irose et al. , Phys. Lett. A 330, 474 (2004)
Ito et al., PoP 11, 5643 (2004)
Howes, NPG 16, 219 (2009)

In order to capture finite beta effects:

cold ions:

����

The compressible Hall-MHD model



Compressibility introduces coupling to magnetosonic modes and allows for
the presence of the decay instability for β<1: important for the generation of
contra-propagating Alfvén waves and thus the development of a cascade.

Dispersion can lead to solitonic structures :

⊥B

Laveder et al. PoP 9, 293; 2002

Example: Alfvén wave filamentation in 3D Hall-MHD: 

but can also be the source of modulational instabilities 
and the formation of small scales: wave collapse:

Oblique soliton in Hall-MHD
(from Stasiewicz et al. PRL 2003)

But compressible Hall-MHD lacks finite Larmor radius corrections, important for β~1,
and the correct dissipation of slow modes.



In order to capture high frequency phenomena and to break the magnetic field 
frozen-in condition: Introduce electron inertia.

The bifluid model

Allows one to study: 

- whistler turbulence 
(neglecting ion inertia the model can be simplified to so-called electron MHD;
at small scales: ions are essentially immobile; currents are due to electrons) 

From Rax, Physique des Plasmas

Dynamical equations for the electron velocity.

- reconnection
no need to introduce dissipative mechanisms; 
fast collisionless reconnection



Relax the collisionallity assumption: introduce a tensorial pressure and the so-called: 

Chew Goldberger Law (CGL) model or double adiabatic  law

Conservation of adiabatic invariants:

Gyrotropy; tensor in the local frame: 

The adiabatic closure assumes that wave phase speeds are much 
larger than particles thermal velocities : it is not a proper closure for the solar wind.

Assume a simple Ohm’s law without Hall term and electron pressure gradient, and zero heat fluxes

For large enough temperature anisotropies, existence of instabilities.

Problem: CGL leads to wrong mirror threshold and does not provide stabilization at 
small scales

along flow trajectories

Chew et al., Proc. R. Soc. London A 236, 112 , 1956



Polytropic laws are in general invalid.

Generalized polytropic indices for wave modes (Belmont & Mazelle JGR 97, 8327 (1992):

ξ =

Z is the plasma dispersion function

is the compressibility

A =1-T ┴ /T// is the anisotropy

Adiabatic limit (CGL) ξ>>1 Isothermal limit ξ <<1 

Depend on the mode; fit well the data. Can lead to closure relations independent
of plasma modes, for linear variations, but of differential type.

For mirror modes e.g.
ξ is to be kept.



A MHD-like model for steady mirror structures

Although the mirror instability is driven by kinetic effects, some properties of 
stationary mirror structures can be captured within the anisotropic  MHD,
supplemented with a  suitable equations of state.

Snyder et al., PoP 4, 3974 (1997)

kinetic theory

double adiabatic theory

CGL is NOT appropriate for mirror modes
(that are static in the plasma frame).

Ad hoc anisotropic polytropic equations of state with parallel 
and perpendicular indices chosen in such a way that the 
mirror instability threshold is reproduced, have been
considered 
(Hau et al., PoP 12, 122904, 2005; NPG 14, 557, 2007 
and reference therein).



An isothermal or static limit is more suitable for mirror modes.

A series of equations can be derived for the gyrotropic components of the even 
moments, and using the assumption of bi-Maxwellian distributions, simple 
equations of state can be obtained, which predicts the correct threshold of the 
mirror instability.

Model potentially relevant for describing the large-scale features of steady mirror 
structures:

Indeed,

• Landau damping vanishes for static solutions.
• FLR corrections negligible at large scales.

Landau damping and FLR corrections are needed in order to reproduce the 
correct instability growth rate.



Projecting the ion velocity equation along the local magnetic field (whose direction is

defined by the unit vector ) leads to the parallel pressure equilibrium condition

for the (gyrotropic) pressure tensor 

where                          and

Consider the static regime characterized by a zero hydrodynamic velocity and
no time dependency of the other moments (Passot, Ruban and Sulem, PoP 13, 102310, 2006).

Assume cold electrons (no parallel electric field) 

The above condition  rewrites:

are the fundamental gyrotropic tensors.

From the divergenceless of B = B    , one has

with

This leads to the condition



We proceed in a similar way at the level of the equation for the heat flux tensor,
by contracting with the two fundamental tensors       and         and get 

where the 4th-order moment is taken in the gyrotropic form

Here,      refers to the symmetrization with respect to all the indices. 
One gets



The closure then consists in assuming that the 4th-order moments are related 
to the second order ones as in the case of a bi-Maxwellian distribution, i.e.: 

and 

One finally gets 

These equations are solved as 

Similar equations of state were derived using a fully kinetic argument by 
Constantinescu, J. Atmos. Terr.  Phys. 64, 645 (2002).      

Equations actually also valid with warm electrons

« Initial condition »
at X=0

Closure can be done 
at higher order

This is exactly the same closure as the one introduced in Belmont’s lecture (in flux tube).



(« MHD description of plasma » by R.M. Kulsrud)Kinetic MHD

Introduction of kinetic pressures
obtained from guiding center equation
in (large-scale) anisotropic MHD



To summarize, the previous models still have the following problems:

- they do not take into account wave particle resonances at the origin of
the dissipation of wave modes; in particular slow modes should be heavily damped.

- they lack a proper determination of FLR at small scales.

- the closure relations depend on the type of wave or the adiabatic/quasistatic regime

3D Vlasov-Maxwell simulations are hardly possible on present-day computers.

Gyrokinetic simulations (G. Howes PoP 15, 055904 , 2008) are now feasible and show the 
presence of cascades both in the physical and velocity spaces in the range  k┴ρ≥1.

Look for a model that can be integrated relatively fast, that allows for strong 
temperature anisotropies and that does not a priori order out the fast magnetosonic 
waves.



• Introduced by Hammett & Perkins (PRL 64, 3019, 1990) as a closure retaining linear 
Landau damping.

• Applied to large-scale MHD by Snyder, Hammett & Dorland  (PoP 4, 3974, 1997)
to close the hierarchy of moment equations derived from the drift kinetic equation.

• Extended to dispersive MHD with Hall effect and large scale FLR corrections 
(Passot & Sulem, PoP 10, 3906, 2003; Goswami, Passot & Sulem, PoP 12, 102109, 2005)

• Inclusion of quasi-transverse scales extending beyond the ion gyroscale, under the 
gyrokinetic scaling (Passot & Sulem, PoP 14, 082502, 2007) : FLR-Landau fluids.

FLR-Landau fluids are based on a full description of the hydrodynamic 
nonlinearities, supplemented by a linear (or semi-linear) description of 
low-frequency kinetic effects (Landau damping and FLR corrections).

In contrast with gyrokinetics, Landau fluids retain fast waves that are accurately 
described away from resonances. 

Note: I will not mention so-called FLR-MHD and many other fluid approaches!....

Fluid description retaining low-frequency kinetic effects: Landau fluid models



Alternative approach: gyrofluids
(Brizard 1992, Dorland & Hammett 1993, Beer & Hammett 1996)

• Obtained by taking velocity moments of the gyrokinetic equation.

• Nonlinear FLR corrections to all orders are captured.

• Linear closure of the hierarchy needed as for Landau fluids.

• All fast magnetosonic waves are ordered out: transverse velocity expressed in 
drift approximation.

Both Landau fluids and gyrofluid neglect wave particle trapping, i.e. the effect of 
particle bounce motion on the distribution function near resonance.



For the sake of simplicity, neglect electron inertia.

Ion dynamics: derived by computing velocity moments from Vlasov Maxwell equations.

rrr nm=ρ

B

VII. The FLR-Landau fluid model

zero in the absence of collisions



Although it could be advantageous to keep the fully nonlinear equation 
for the pressure tensor, leaving the modelization at the level of the heat
flux tensor, it is easier at first to decompose the pressure as follows:

= B / |B|.

Electron pressure tensor is taken gyrotropic 
(considered scales >> electron Larmor radius)
and thus characterized by the parallel and transverse pressures 

FLR corrections



heat flux tensor

work of the non-gyrotropic 
pressure force

Exact equations for the perpendicular and parallel pressures

Modelization of the heat flux tensor:

with

The tensor S writes:

The vectors S// and S┴ are defined by and



One has and

One can write

The  contribution of the tensor S in the pressure equations then reads:

They are the only contributions to the gyrotropic heat flux tensor:

At the linear level, σr does not contribute to the heat flux terms in the equations for 
the gyrotropic pressures.

Nonlinear expressions of σr in the large-scale limit given in Ramos, PoP 12, 052102 (2005)



Equations for the perpendicular and parallel gyrotr opic heat fluxes

At this level some simplifications are introduced to reduce the level of complexity
(see Ramos 2005 for the full set of nonlinear equations)

Terms that involve the non-gyrotropic pressure and heat fluxes are kept only when
they appear linearly

Involve the 4th-rank gyrotropic cumulants:

stand for the linear nongyrotropic contributions 
of the 4th-rank cumulants.



The completion of this model requires the determination of:

� closure relations to express the 4th-rank cumulants
(closure at lower or higher order also possible)

Only issue when dealing with the Large-Scale Landau fluid model
(Snyder, Hammett & Dorland, PoP 4, 3974, 1997).

� (non gyrotropic) FLR corrections to all moments.



The 4th-rank cumulants are obtained from the linearized kinetic theory , 
assuming small frequencies with respect to the ion gyrofrequ ency.

(assuming long wavelengths with respect to the ion gyroradius or quasi-perpendicular 
directions).

IN PRACTICE:

The kinetic expressions typically depend on electromagnetic field components
and involve the plasma dispersion function (which is nonlocal both in space and time). 

These various expressions are  expressed in terms of other fluid moments 
in such a way as to minimize the occurrence of the plasma dispersion function. 

The latter is otherwise replaced by suitable Padé approximants, thus leading to
local-in-time expressions. At some places, a Hilbert transform with respect 
to the longitudinal space coordinate appears, that modelizes Landau damping.

Brief description of the hierarchy closure

This procedure ensures consistency with the low-frequency linear 
kinetic theory, up to the use of Padé approximants.



Illustrate the basic idea on the electrostatic Vlasov model.

Linearized equation:

replace and get

leading to



Linearized fluid moments:

Introducing the plasma function:



One gets:



One has: and thus

n0

T0

Defining the cumulant:



One also has:

q(1)

q(1)

-3



Replace the response function by the following Padé approximant

This leads to: q(1)

With this replacement, one has: 

Landau damping is only appearing at the level of the closure relation, i.e.
here in the fourth-order cumulant.



Comparaison between Vlasov and Landau fluid simulations

Vlasov (A. Mangeney and F. Califano)

n

Te

Parallel electron
heat flux

x

Te

∂
∂∝

Landau fluid

Domain size: 
20 000 λe

Initial condition

Diffusion of a temperature gradient



Hierarchy closure

from kinetic theory:

Using 4-pole Padé:

Using 2-pole Padé:

one gets:

one gets:

These formulas can be expressed in terms of lower order fluid moments.

R: plasma response function

For each species

Larmor radius

Bessel modified function

In physical space:
negative Hilbert
transform: signature
of Landau resonance

at large scales

At scales >> Larmor radius

=1 =0

overline: instantaneous
space average
prime: fluctuations



At which level is it appropriate to close the hierarchy?

Keeping higher fluid moments allows one to account for distortions of the 
distribution function and to keep more fluid nonlinearities.

Taking a higher order Padé approximant leads to more precise approximations. 
But, except in particular cases, all the ζ terms cannot be eliminated, thus leading to
closure relations in the form of linear PDEs instead of algebraic relations.

This is thus analogous to closing the fluid hierarchy at a higher moment, possibly
with a Padé of lower order. 

Example:
Take R3 instead of R2 for          leads to:

Problem: preserving Galilean
invariance introduces one nonlinear
term. Many others are missing!



Several choices of Padé approximant are possible. We choose one that
has a globally better fit, even if another one performs slighlty better at large scales



When restricting to large scales, thus neglecting the Hall and FLR terms,
this system develops microinstabilities that lead to blow up.

Assuming that the state of the plasma remains limited by the marginal
stability limit, a heuristic method was used in Sharma et al. (ApJ 637, 952  (2006))

in the context of MRI in accretion disks.



Introduction of collisions in this type of closures is possible:

See: Sharma & Hammett, ApJ 596, 1121 (2003)
Chang & Callen Phys. Fluids B 4, 1167 (1992) and 4, 1182 (1992)

Using the (too simple) form of BGK collision operator

Gross &Krook, Phys. Rev. 102, 593 (1956).
Bhatnagar, Z. Astrophys. 54, 234 (1962).
Green, Phys. Fluids 11, 2022 (1973).
Livi & Marsh, Phys. Rev. A 34, 533 (1986).



leads to additional terms :

with, in addition, the Joule term in the magnetic field equation (allowing for energy
conservation) and a linear term in the fourth order cumulant equation r//┴

in the 
r.h.s. of 
pressure
equation

in the 
r.h.s. of 
heat flux
equation

Sulem and Passot, AIP Conf. Proc. 1439, 99 (2012).



Two methods to determine the non-gyrotropic element s of the tensors

I. Solve the (coupled) algebraic equations that result from the projection
the tensorial pressure equations, orthogonally to the gyrotropic  "directions".

At the level of the pressure:

Projection on the image: 

The solvability conditions lead to the dynamical equations for pressures and heat fluxes

Exact solution for the gyroviscous tensor:
Πr

Πr



Since П also appears in the r.h.s., this procedure requires an expansion in a small parameter,
usually taken as the time and space scale separation with the ion gyroscales. 

Leads to the Meso-Scale Landau fluid model .

This formula has the great advantage of being fully nonlinear. 
Its algebraic complexity, however precludes an easy numerical implementation.

A second order solution of coupled equations for the vectors S and the tensor Π is possible
and was explicited in a linear setting in Goswami, Passot & Sulem,  PoP 12, 102109 (2005).

The resulting model is refined in Passot, Sulem & Hunana, PoP 19, 082113 (2012)
by retaining  two additional ingredients:

• Full description of the heat flux tensor
(tensor σ taken from Ramos PoP 12, 052102 ,2005)

• Non-gyrotropic contributions RNG of the fourth-rank tensor 
(entering the equation for q// and q┴).

These additions are required in order to reproduce the linear growth rate of the mirror instability, 
and in particular the restabilization at small scales.

Mirror-instability threshold captured by LS Landau fluids (including only Landau damping).



where

One has:

σ contributes to the gyroviscosity
at a linear level.



• Second order terms are required to capture the dispersion relation of 
KAWs                          and magnetosonic waves

Hazegawa & Chen, Phys. Fluids, 19, 1924 (1976)             Mikhailovskii & Smolyakov, JETP 61, 109 (1985)

KAW , β=0.01, τ=1, θ =atan(1000) Magnetosonic waves : β=3, τ=1, θ=π/2

wherevalid when

1st order

2nd order

1st order

2nd order

theory
theory

FLR-Landau fluid 
(discussed later)

Theory:Theory:

ρ≡rL



Mirror growth rate:

In the case of cold electrons an analytic derivation of the growth rate was performed.

this leads to:

contribution from RNG

The last term is equal to -3/2 if evaluated from kinetic theory;
in the fluid framework its correct determination needs to take into account the heat 
flux contribution σ.

With these ingredients, the growth rate identifies with that of the kinetic theory.

Note that a fluid closure that neglects RNG leads to an ill-posed problem.

(see  Sulem’s lecture)



This Meso-Scale Landau fluid model, nevertheless leads to spurious instability
(beyond its range of validity) for  KAWs when temperature anisotropy is too large.

KAW, θ=85

β//=1.5
ap=1.5
τ=1
ae=1.1

WHAMP
(kinetic)

Meso-Scale Landau fluid

Although the instability occurs beyond the spectral validity range of the model, such unstable 
scales are usually present in simulations not limited to the largest MHD scales.  

In such a regime, an accurate description of the small scales is required, at least at 
a linear level.

θ= 85°



II.  The other possiblity to determine FLR contributions is to use the 
linear kinetic theory in the low-frequency limit:
(for a bi-Maxwellian d.f.)

In this case, the expansion is valid for:
• quasi-transverse fluctuations

• hydrodynamic scales with

Lrk//

Lrk⊥

ε

1

Lr : ion Larmor radius

22

2
2 2

Ω
=

Ω
= ⊥⊥

i

th
L m

Tv
r



All fluid moments are calculated from the linearized kinetic theory , 
assuming small frequencies with respect to the ion gyrofrequency.

This step involves exactly the same assumptions as gyrokinetics :

IN FACT: the dispersion relation of the plasma modes, obtained from the quasi-
neutrality equations together with parallel and perpendicular Ampere’s laws after 
plugging the ion and electron densities and velocities calculated from this low-
frequency kinetic theory, is identical to the gyrokinetic one (Howes et al. ApJ 651:590–614 

(2006)).

Since it includes temperature anisotropy, it allows one to derive the mirror instability 
growth rate with hot electrons in its full generality (Kuznetsov et al. PoP 19, 090701 (2012))



with

A more sophisticated treatment is necessary for the D term:
perpendicular pressure balance is to be imposed and q┴ has to be obtained form T

FLR terms:

also relevant
for electrons

instantaneous space averages

functions of transverse wavenumbers
involving modified Bessel functions



• The model conserves the total energy:

Conservation of energy is independent of the heat fluxes and subsequent equations, 
but requires retaining  the work done by the FLR stress forces.  

• Implementation of the Landau damping via Hilbert transforms, and also of the
FLR coefficients as Bessel functions of k┴ρ, is easy in a spectral code.

• Electron Landau damping is an essential ingredient in many cases
(limiting the range of validity of isothermal electrons often used in hybrid simulations).

• All linearized fluid equations are satisfied when plugging the fluid moments directly
calculated from the LF kinetic theory, except the perpendicular velocity equation: it
reduces to the perpendicular pressure balance condition, as in gyrokinetics.



Dispersion relation of low frequency modes: 
comparison with linear kinetic theory



Mirror modes:



Frequency and damping rate of Alfvén waves:

oblique propagation

Does not capture
resonance

quasi-transverse propagation
(Kinetic Alfvén waves)

frequency damping rate
frequency damping rate
θ≈84°

θ=89.9°



Kinetic Alfvén waves

KAW, θ=89°

β//=2
ap=ae=1
τ=1

Eigenmode

Magnetic compressibility

Damping rate

Meso-Scale Landau fluid

WAMP
(fully kinetic)

FLR-Landau fluid

x component

y component

z component

electric 
field

magnetic  
field

velocity
field

Comparison FLR-Landau fluid with full kinetics
≈1

Passot et al., PoP 19, 082113, 2012
Meso-Scale Landau fluid is correct up to

FLR-LF
kinetic theory



For large β and angles close to 90°, 
the frequency can exceed the ion gyrofrequency without encountering resonance.
In this case, the FLR-Landau fluid remains valid.

θ=80° (red), θ=83° (green), θ=86° (blue), θ=89° (magenta) 

real frequency

damping rate

Comparison FLR-Landau fluid (crosses) with full kinetics (continuous line)



magnetic compressibility:

electric field polarization: 
left polarized wave
right polarized wave

Proton beta is 0.1, 0.5, 1, 2, 4, 10

polytropic
bi-fluid

LS-LF

FLR-LF

Polytropic bi-fluid : incorrect even at large scales; Landau damping is not sufficient to reproduce kinetic theory.
FLR-Landau fluid provides an precise agreement with kinetic theory.     (Hunana et al. ApJ, in press).
Anisotropy of pressure fluctuations alone introduce a major change in wave properties!

magnetic compressibility magnetic compressibilitypolarization polarization 



The isothermal electron equation of state leads to drastically different results
already when k┴ρ ≥1

=> caution should be taken with hybrid models



Fast magnetosonic waves

Landau fluids capture fast magnetosonic waves up to the ion cyclotron resonance

WHAMP

Ion-cyclotron resonance
is not captured by Landau fluids



Non-modal linear theory : 

Longer persistence of large perturbations
closer to marginal stability (electron oblique 
firehose, quasi-perpendicular propagation)

Transient growth in a homogeneous medium at rest with a uniform magnetic field:
it is more accentuated for smaller scales and higher plasma beta.
Camporeale et al. PoP 16, 030703 (2009) & ApJ 715:260–270 (2010)

Prediction
of modal
theory.



Average for 10 000 random initial perturbations

Total norm of state vector

Magnetic fluctuationIn this scenario, a parcel of plasma could experience 
a “local” marginal stability condition due to a temporary 
enhanced magnetic fluctuation, and the anisotropy will 
be reduced in the same way as it is reduced under
unstable conditions.

Enhanced near stability
boundary

Temperatures refer to electrons
Marginal stability
curve



Parallel Alfvén wave dynamics using a 
simplified Landau -fluid model



Drift-kinetic analysis (from Inhester 1990) Landau fluid simulation

03.0/ =ei PP 20.0/ =ei PP 00.1/ =ei PP

Decay instability of Alfvén wave produces a forward propagating acoustic wave 
and a backward Alfvén wave with wavenumber smaller than that of the pump.

(no dispersion)

Decay instability of parallel Alfvén waves in the l ong-wavelength limit in 1D



In the cas of parametric decay of parallel propagating Alfvén waves
the parallel (perpendicular) temperature is found to increase (decrease).

T┴i

T||i

T||e

T┴e

Burgnon et al. NPG 11, 609 (2004)

The case of modulational instability
is different:

T||i

T┴i

T┴e

T||e

Results consistant with Hybrid PIC
simulations of Matteini et al. JGR (2010).



Propagation in a density inhomogeneity in 3D

• Ion equations

where 

(electron inertia neglected)

(non gyrotropic heat flux 
contributions neglected)

Electrons are viewed as an (isothermal) fluid 
with a scalar pressure 



• Third order momentum closure

Hilbert transform (signature of Landau damping)

• Ion gyroviscous tensor



Landau fluid PIC
Comparison between Landau 
fluid and hybrid PIC simulations

30/1/ =pe TT

01.0=eβ3.0=pβ

Propagation of an Alfvén
wave in a density inhomogeneity
(parallel high density channel
of small amplitude)

Borgogno et al.  NPG 16, 275 (2009)

At larger amplitude



Decay simulations in 3D: 
Reduction of compressibility and 

parallel transfer by Landau damping

P. Hunana, D. Laveder, T. Passot, P.L. Sulem, D. Borgogno, ApJ 743:128  (2011)



3D MS-Landau fluid simulations in a turbulent regim e
(simplified model)  (Hunana, Laveder, Passot, Sulem  & Borgogno,   ApJ  743, 128, 2011).

Freely decaying turbulence (temperatures remain close to their initial values)

� Isothermal electrons
� Initially:  

no temperature anisotropy; 
equal ion and electron temperatures
incompressible velocity.

Pseudo-spectral code 
Resolution: 1283 (with small scale filtering)

Size of the computational domain: 32 π inertial lengths in each direction
Initially, energy on the first 4 velocity and magnetic Fourier modes kdi= m/16 (m=1,…,4)
with flat spectra and random phase.



Compressibility reduction by Landau damping

Comparison of MS-Landau fluids and Hall-MHD simulat ions

Important in solar wind context: Although solar wind is a fully compressible medium, 
the turbulent fluctuations behave as is there were weakly compressible.



Spectral anisotropy
Hall-MHD 

FLR-Landau fluid 

Transverse directions                          Parallel direction              

Kinetic
energy

Magnetic 
energy

Strong reduction of the parallel transfer



Damping of slow modes

Strong damping of sound waves in oblique directions as well, 
but not in the perpendicular one.



Simulations of the development of temperature 
anisotropy and its limitation by 

micro-instabilities

D. Laveder, L. Marradi, T. Passot, and P. L. Sulem, GRL 38, L17108 (2011).



“In a number of systems such as the solar corona 
and the solar wind, ions are observed to undergo 
perpendicular heating, despite the fact that most of
the fluctuation energy is believed to be in the form
of low-frequency kinetic Alfvén wave fluctuations.
Determining the cause of such perpendicular heating 
is one of the critical unsolved problem in the study 
of space and astrophysical turbulence”.

(Report of the Workshop on Research Opportunity in Plasma Astrophysics, 
Princeton, January 2010)

Need for a fully nonlinear approach.

Simulation of perpendicular
ion heating under the action
of given randomly phased 
KAW with wavelength comparable 
to the ion Larmor radius on 
particles for

(Chandran et al. ApJ 720, 503, 201

see also Bourouaine, 2008)

Non-resonant heating: Proton magnetic moment
versus the heliocentric 
distance (Marsch, Living 
Review  Solar Phys., 2006)



Parameters of the 1D FLR-Landau fluid simulations:

• Angle of propagation: 80o with respect to the ambient magnetic field

• White noise in time random driving around kinj, applied on the perpendicular 
velocity component (uy) each time the sum of kinetic and magnetic energy falls 
below a given threshold: it is intended to simulate the injection of energy from the 
end of the solar wind Alfvén wave cascade.

Resulting root mean square of the transverse magnetic field fluctuations is of the 
order of 0.12 times the magnitude of the ambient field (realistic for the solar wind)

• Isotropic initial temperatures; various parallel proton β.

• Size of the domain L measured in units of ion inertial length

• Number of grid points: typically N=256 (after partial desaliazing).

• No artificial dissipation is added. 



Ti
┴

Ti
//

Fixing kinj/kρ=0.087 (relatively small scale) and varying β (thus changing the domain size)

Red: β=0.6, L=12 π
Green: β =1.2, L=16 π
Blue: β =2.4, L=22 π
Pink: β =9.6, L=144 π

β=0.6

β=1.2

β=2.4

β=9.6

Perpendicular heating  and (early time) parallel cooling 
of ions, with a larger efficiency as β is reduced 

(in agreement with  simulations of the action of prescribed KAW,
Chandran et al. ApJ 2010)

Time variation of the (space averaged) ion temperatures

With injection at larger scales, 
there is a critical value of β, 
below which parallel ion heating
and above which perpendicular 
heating dominates.



Parallel electron temperature (same conditions)

β=0.6

β=1.2

β=2.4

Te
//

Efficient parallel electron heating at small β



Parallel cooling

Perpendicular heating

β=0.6

FLR contributions

total temperature variation 

Origin of heating/cooling:

Dominant FLR contributions:
more important close to mirror threshold

Space-averaged magnetic moment
per unit mass

Hall term

nongyrotropic
heat flux

nongyrotropic 
pressure

dominant contribution

Both parallel and perpendicular heat 
fluxes contribute to the variation of  



Evolution of the mean temperatures

Eartly time:
heating of perpendicular proton temperature
and cooling of parallel proton temperature
associated with low frequency modes. β=0.6

Magnetic
compressibility:
sharp increase
at the onset of the
mirror instability

Mirror structures

When mirror modes are linearly damped, 
dynamics is governed by quasi-linear theory  
(Shapiro and Shevchenko [1964]) 
(when prescribing a bi-Maxwellian ion 
distribution function) 

Leads to :
• growth of perpendicular ion temperature
• decrease of parallel ion temperature

Growth of ion temperatures:  Ti
┴>Ti

//
More moderate growth of electron 
temperatures:Te

┴<Te
//



Development of the mirror instability

Fast magnetosonic waves

Formation of mirror structures



Formation of static magnetic holes

|b|

n

c
x piω

12000 −Ω= pt

Lr6

Mirror structures from initial random noise

5.1/    ,5 //// == ⊥ ppp TTβ

2.0cos   ,1/    , 05.0/ ////// === ⊥ θeepe TTTT

Cluster observations 
(Génot et al.)

Using the full model in 1D 



The temperature anisotropy is constrained by the mi rror instability

Distance to mirror threshold:
Pantellini & Schwartz, JGR 100, 3539 (1995); Pokhotelov et al. JGR 105, 2393 (2000), Hellinger PoP 14, 082105 (2007);
Kuznetsov, Passot & Sulem, PoP Letter (2012)

Influence of β, keeping constant  kinj ρL

0
time

-1

0

1

Γ

β=1.2

β=0.3

β=0.6

The same amount of exchanged 
thermal and non thermal energy leads to 
lower temperature change at larger β.

Also more magnetosonic waves at small β, 
leading to a greater distance to threshold
and more oscillations.



Comparison with solar wind data

Solar wind data
Bale et al. PRL 103, 21101 (2009)

A large majority of the observational measurements 
in the case of a predominant ion perpendicular
heating are limited from above by the curve 

that fits the contour associated with the growth rate 
of the mirror instability in linear kinetic computations assuming 
bi-Maxwellian ions and isothermal electrons.

Same, when the energy 
threshold is divided by a 
factor 16

Points: local values of (β// , 
T┴ /T//) in the simulation at 
β=0.6

Collecting points from several
runs starting at various values
of β: the plasma does not
enter the unstable range.

Ωi

FLR-Landau fluid simulations:



Equal parallel and perpendicular 

electron temperatures.

With collisions, smaller distance to threshold.

BGK collision operator is included in the
Vlasov equation, leading to linear and
nonlinear additional contributions in the 
moment equations (see Green, PoF 1973)

Influence of weak collisions 

With collisions, points characterizing the state
of the system follow the threshold curve

νie=10-5

No collision

νie=10-5
νie=0.25 x 10-5

νie=10-5νie=0.25 x10-5



Conclusions

In situations where the distribution function is not too far from a Maxwellian,
it is possible to recourse to fluid models to describe low frequency phenomena.

In order to address small-scale phenomena in directions quasi-perpendicular to
the ambient magnetic field in plasmas with temperature anisotropy, fluid models 
should contain a minimum amount of complexity: 

- equations for the fluid hierarchy up to heat fluxes
- finite Larmor radius corrections with the correct dependency
on wave numbers (Bessel functions)

- closure that retains Landau damping for both ions and electrons.

This FLR-Landau fluid model can capture plasma heating, an issue of importance
in accretion disks and in the intra-cluster medium, where the micro-instabilities 
have large-scale consequences.

Three-dimensional simulations of the full model are coming soon and should
shed light on the transition of the KAW cascade at the ion scale.


